
DeviceNet
NI-DNETTM Programmer
Reference Manual

NI-DNET Programmer Reference Manual

May 2004 Edition
Part Number 370376B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2001–2004 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, NI™, ni.com™, and NI-DNET™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

© National Instruments Corporation iv NI-DNET Programmer Reference Manual

Contents

About This Manual
How to Use the Manual Set ...vi
Conventions ...vii
Related Documentation..vii

Chapter 1
NI-DNET Data Types

Chapter 2
NI-DNET Functions

Using the Function Descriptions..2-1
List of NI-DNET Functions ...2-2
EasyIOClose (Easy IO Close)..2-4
EasyIOConfig (Easy IO Config)..2-6
ncCloseObject (Close) ...2-10
ncConvertForDnetWrite (Convert For DeviceNet Write) ...2-12
ncConvertFromDnetRead (Convert From DeviceNet Read)...2-20
ncCreateNotification (Create Notification) ...2-27
ncCreateOccurrence (Create Occurrence) ...2-36
ncGetDnetAttribute (Get DeviceNet Attribute)...2-40
ncGetDriverAttr (Get Driver Attribute)...2-46
ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)2-49
ncOpenDnetIntf (Open DeviceNet Interface)..2-52
ncOpenDnetIO (Open DeviceNet I/O) ..2-58
ncOperateDnetIntf (Operate DeviceNet Interface)..2-68
ncReadDnetExplMsg (Read DeviceNet Explicit Message) ..2-72
ncReadDnetIO (Read DeviceNet I/O) ...2-76
ncSetDnetAttribute (Set DeviceNet Attribute) ..2-79
ncSetDriverAttr (Set Driver Attribute) ..2-84
ncStatusToString (Status To String) ..2-87
ncWaitForState (Wait For State) ...2-90
ncWriteDnetExplMsg (Write DeviceNet Explicit Message)...2-95
ncWriteDnetIO (Write DeviceNet I/O) ...2-99

Contents

© National Instruments Corporation v NI-DNET Programmer Reference Manual

Chapter 3
NI-DNET Objects

Explicit Messaging Object...3-2
Interface Object..3-7
I/O Object ..3-10

Appendix A
Technical Support and Professional Services

Glossary

Index

© National Instruments Corporation vi NI-DNET Programmer Reference Manual

About This Manual

This manual is a programming reference for functions, objects, and
data types in the NI-DNET software for Win32, the 32-bit programming
environment of Windows NT/98/95. The NI-DNET software is meant to be
used with either Windows 98/95 or Windows NT version 3.51 or later. This
manual assumes that you are already familiar with the Windows system you
are using.

How to Use the Manual Set

Use the installation guide to install and configure your DeviceNet hardware
and NI-DNET software.

Use the NI-DNET User Manual to learn the basics of NI-DNET and how to
develop an application. The user manual also contains information about
DeviceNet hardware.

Use this NI-DNET Programmer Reference Manual for specific information
about each NI-DNET function and object.

NI-DNET
User Manual

Application
Development
and Examples

First-Time
NI-DNET

Users

Experienced
NI-DNET

Users

Installation
Guide

Software and
Hardware
Installation

NI-DNET
Programmer
Reference

Manual

Function
and Object

Descriptions

About This Manual

© National Instruments Corporation vii NI-DNET Programmer Reference Manual

Conventions
The following conventions appear in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

Related Documentation
The following documents contain information that you might find helpful
as you read this manual:

• CAN Specification Version 2.0, 1991, Robert Bosch Gmbh.,
Postfach 500, D-7000 Stuttgart 1

• DeviceNet Specification, Volumes 1 and 2, Version 2.0, Open
DeviceNet Vendor Association

• LabVIEW online reference

• Microsoft Win32 Software Development Kit (SDK) online help

© National Instruments Corporation 1-1 NI-DNET Programmer Reference Manual

1
NI-DNET Data Types

This chapter describes the data types used by NI-DNET functions and objects.

The NI-DNET data types provide consistency for various programming environments and
facilitate access to the DeviceNet network. In general, all NI-DNET data types begin with
NCTYPE_.

Table 1-1 lists each NI-DNET data type, its equivalent data type in ANSI C, LabVIEW, and
DeviceNet, and a brief description.

Table 1-1. NI-DNET Data Types

NI-DNET
Data Type ANSI C LabVIEW DeviceNet Description

NCTYPE_type_P NCTYPE_type * N/A N/A Pointer to a variable with
type type

NCTYPE_INT8 signed char I8 SINT 8-bit signed integer

NCTYPE_INT16 signed short I16 INT 16-bit signed integer

NCTYPE_INT32 signed long I32 DINT 32-bit signed integer

NCTYPE_UINT8 unsigned char U8 USINT 8-bit unsigned integer

NCTYPE_UINT16 unsigned short U16 UINT 16-bit unsigned integer

NCTYPE_UINT32 unsigned long U32 UDINT 32-bit unsigned integer

NCTYPE_BOOL unsigned char TF (Boolean) BOOL Boolean value. In ANSI C,
constants NC_TRUE (1)
and NC_FALSE (0) are
used for comparisons

NCTYPE_STRING char *, array of
characters terminated
by null character \0

abc (string) STRING ASCII character string

NCTYPE_REAL float SGL REAL 32-bit floating point

NCTYPE_LREAL double DBL LREAL 64-bit floating point

Chapter 1 NI-DNET Data Types

© National Instruments Corporation 1-2 NI-DNET Programmer Reference Manual

NCTYPE_ANY_P void * N/A N/A Reference to variable of
unknown type, used in cases
where actual data type can
vary depending on particular
context.

NCTYPE_OBJH unsigned long Type definition
ncObjHandle.ctl
(U32)

N/A Handle referring to an
NI-DNET object. Refer to
ncOpenDnetExplMsg,
ncOpenDnetIntf, and
ncOpenDnetIO in
Chapter 2, NI-DNET
Functions.

NCTYPE_VERSION unsigned long U32 N/A Version number. Major,
minor, subminor, and beta
version numbers are encoded
in unsigned 32-bit integer
from high byte to low byte.
Letters are encoded as
numeric equivalents (‘A’ is 1,
‘Z’ is 26, and so on). Version
2.0B would be hexadecimal
02000200, and Beta
version 1.4.2 beta 7 would
be hex 01040207.

NCTYPE_DURATION unsigned long U32 N/A Time duration indicating
elapsed time between two
events. Time is expressed
in 1 ms increments. (For
example, 10 s is 10,000.)
Special constant
NC_DURATION_NONE (0)
is used for zero duration, and
NC_DURATION_
INFINITE (FFFFFFFF
hex) is used for infinite
duration.

NCTYPE_ATTRID unsigned long U32 N/A Identifier used to access
internal attributes in the
NI-DNET device driver
(not attributes in DeviceNet
devices). Refer to Chapter 3,
NI-DNET Objects.

Table 1-1. NI-DNET Data Types (Continued)

NI-DNET
Data Type ANSI C LabVIEW DeviceNet Description

Chapter 1 NI-DNET Data Types

NI-DNET Programmer Reference Manual 1-3 ni.com

NCTYPE_OPCODE unsigned long U32 N/A Operation code used with
ncOperateDnetIntf
function.

NCTYPE_STATE unsigned long U32 N/A Object states, encoded as
32-bit mask (one bit for each
state). For information, refer
to ncWaitForState in
Chapter 2, NI-DNET
Functions.

NCTYPE_STATUS signed long I32 N/A For ANSI C, this represents
the status returned from
NI-DNET functions. Refer
to ncStatusToString
for more information.
For LabVIEW, NI-DNET
functions use the standard
error clusters for status
information.

Table 1-1. NI-DNET Data Types (Continued)

NI-DNET
Data Type ANSI C LabVIEW DeviceNet Description

© National Instruments Corporation 2-1 NI-DNET Programmer Reference Manual

2
NI-DNET Functions

This chapter lists all NI-DNET functions and describes the purpose, format, parameters, and
return status for each function.

Unless otherwise stated, each NI-DNET function suspends execution of your program until
it completes.

Using the Function Descriptions
This chapter lists the NI-DNET functions alphabetically. The description of each function is
structured as follows:

Purpose
States the function’s purpose.

Format
Describes the function’s format for the LabVIEW and C (including C++) programming
languages.

Input
Lists the function’s input parameters (values passed into the function).

Output
Lists the function’s output parameters (values passed out of the function).

Function Description
Provides details about the function’s purpose and effect.

Parameter Description
Provides details about each input/output parameter, including allowed values and their
meanings.

Chapter 2 NI-DNET Functions — List of NI-DNET Functions

NI-DNET Programmer Reference Manual 2-2 ni.com

Examples
Each function description includes sample LabVIEW and C code showing how to use the
function. For more detailed examples, refer to the NI-DNET User Manual for information
regarding the location of example programs for LabVIEW and C.

List of NI-DNET Functions
Table 2-1 contains an alphabetical list of the NI-DNET functions.

Table 2-1. NI-DNET Functions

Function Purpose

EasyIOClose (Easy IO Close) Close multiple NI-DNET objects (LabVIEW only)

EasyIOConfig (Easy IO Config) Configure and open multiple NI-DNET objects
(LabVIEW only)

ncCloseObject (Close) Close an NI-DNET object

ncConvertForDnetWrite
(Convert for DeviceNet Write)

Convert an appropriate LabVIEW data type for
writing data bytes on the DeviceNet network

ncConvertFromDnetRead
(Convert From DeviceNet Read)

Convert data from the DeviceNet network into an
appropriate LabVIEW data type

ncCreateNotification
(Create Notification)

Create a notification callback for an object (C only)

ncCreateOccurrence
(Create Occurrence)

Create a notification occurrence for an object
(LabVIEW only)

ncGetDnetAttribute
(Get DeviceNet Attribute)

Get an attribute value from a DeviceNet device
using an Explicit Messaging Object

ncGetDriverAttr
(Get Driver Attribute)

Get the value of an attribute in the NI-DNET driver

ncOpenDnetExplMsg (Open
DeviceNet Explicit Messaging)

Configure and open an NI-DNET Explicit
Messaging Object

ncOpenDnetIntf
(Open DeviceNet Interface)

Configure and open an NI-DNET Interface Object

ncOpenDnetIO
(Open DeviceNet I/O)

Configure and open an NI-DNET I/O Object

Chapter 2 NI-DNET Functions — List of NI-DNET Functions

© National Instruments Corporation 2-3 NI-DNET Programmer Reference Manual

ncOperateDnetIntf (Operate
DeviceNet Interface)

Perform an operation on an NI-DNET Interface
Object

ncReadDnetExplMsg (Read
DeviceNet Explicit Message)

Read an explicit message response from an Explicit
Messaging Object

ncReadDnetIO
(Read DeviceNet I/O)

Read input from an I/O Object

ncSetDnetAttribute
(Set DeviceNet Attribute)

Set an attribute value for a DeviceNet device using
an Explicit Messaging Object

ncSetDriverAttr
(Set Driver Attribute)

Set the value of an attribute in the NI-DNET driver

ncStatusToString
(Status to String)

Convert status returned from an NI-DNET function
into a descriptive string (C only)

ncWaitForState
(Wait for State)

Wait for one or more states to occur in an object

ncWriteDnetExplMsg (Write
DeviceNet Explicit Message)

Write an explicit message request using an Explicit
Messaging Object

ncWriteDnetIO
(Write DeviceNet I/O)

Write output to an I/O Object

Table 2-1. NI-DNET Functions (Continued)

Function Purpose

Chapter 2 NI-DNET Functions — EasyIOClose (Easy IO Close)

NI-DNET Programmer Reference Manual 2-4 ni.com

EasyIOClose (Easy IO Close)

Purpose
Close multiple NI-DNET objects in one call.

Format
LabVIEW

C
Not applicable

Input
Interface ObjHandle In Object handle of an open Interface Object, returned from

either Easy IO Config or Open DeviceNet Interface function

Device ObjHandle In Array of I/O and/or Explicit Messaging object handles

Error in NI-DNET Error Cluster input

Output
Error out NI-DNET Error Cluster output

Function Description
EasyIOClose stops the Interface Object, closes all the object handles passed in the Device
ObjHandle In parameter, and then closes the Interface Object. You normally call
EasyIOClose near the end of your application to ensure that all objects are properly
deallocated.

EasyIOClose accepts Interface ObjHandle In and Device ObjHandle In as input
parameters. You pass the outputs from EasyIOConfig as inputs to EasyIOClose.

Internally, the EasyIOClose function makes use of OperateDeviceNetInterface.vi
(ncOperateDnetIntf) and CloseObject.vi (ncCloseObject). To learn more about
these functions, refer to the corresponding function description sections.

Chapter 2 NI-DNET Functions — EasyIOClose (Easy IO Close)

© National Instruments Corporation 2-5 NI-DNET Programmer Reference Manual

Parameter Descriptions
Interface ObjHandle In

Device ObjHandle In

Examples
LabVIEW
Close Interface Object and I/O Objects opened with Easy IO Config.

Description Contains an interface object handle returned from the Easy IO Config or
Open DeviceNet Interface function.

Values The encoding of object handle is internal to NI-DNET.

Description Array of I/O object handles to be closed. You pass in the array returned
from Easy IO Config.

Values The encoding of object handles is internal to NI-DNET.

Chapter 2 NI-DNET Functions — EasyIOConfig (Easy IO Config)

NI-DNET Programmer Reference Manual 2-6 ni.com

EasyIOConfig (Easy IO Config)

Purpose
Configure and open an NI-DNET Interface Object and multiple NI-DNET I/O Objects.

Format
LabVIEW

C
Not applicable

Input
Interface Name Name of DeviceNet interface

Device Configurations Array of I/O Object configuration clusters

DeviceMacId MAC ID of the remote device

ConnectionType Type of I/O connection

InputLength Number of input bytes

OutputLength Number of output bytes

ExpPacketRate Expected rate of I/O message (packet) production

Interface Configuration Interface Object configuration cluster

IntfMacId MAC ID of the DeviceNet interface

BaudRate Baud rate

PollMode Communication scheme for all polled I/O connections

Output
Interface ObjHandle Out Object handle you use with all subsequent function calls

for the Interface Object

Device ObjHandle Out Array of object handles you index to reference a
particular I/O Object

Error out NI-DNET Error Cluster output

Chapter 2 NI-DNET Functions — EasyIOConfig (Easy IO Config)

© National Instruments Corporation 2-7 NI-DNET Programmer Reference Manual

Function Description
EasyIOConfig configures, opens, and starts an Interface and multiple I/O Objects,
and returns object handles for the newly created objects.

Internally, the EasyIOConfig function makes use of ncOpenDnetIntf, ncOpenDnetIO,
ncOperateDnetIntf, and ncWaitForState. If you are not familiar with the input clusters
mentioned above, refer to ncOpenDnetIntf and/or ncOpenDnetIO parameter descriptions
before reading this section. For more details on any of these functions, please refer to the
corresponding function description given in this chapter.

Use EasyIOConfig to open multiple devices (I/O connections) with one VI call. This
high-level function accepts Interface Configuration and an array of Device
Configurations as its inputs. The Device Configurations can contain any number
of I/O connections that you want to open. Remember, however, that you can only have one
instance of a particular connection per device. For example, you cannot open two poll
connections on the same device. Similarly, opening COS and cyclic connections
simultaneously on a device will result in an error, since these two connections are
mutually exclusive.

The relationship between expected packet rate (EPR) and the PollMode parameter of the
Interface Object is the same as discussed in the ncOpenDnetIntf and ncOpenDnetIO
function descriptions. For example, if you configure the Interface Object in Scanned mode,
you must configure all the strobe connections with the same EPR and all the poll connections
with either the same EPR value or an integer multiple of it. If this is not the case, you will see
an Inconsistent Parameter error.

Since the EasyIOConfig function also starts the interface, a call to ncOperateDnetIntf
(for Start) is only needed if the communication needs to be interrupted in the middle of your
application to set some driver attributes for an object. To do so, call ncOperateDnetIntf
with Stop as the Opcode after calling EasyIOConfig, make necessary calls to
ncSetDriverAttr, and then call ncOperateDnetIntf with Start as the Opcode to
restart the communication.

To open an Explicit Messaging Object, call ncOpenDnetExplMsg separately after a call to
EasyIOConfig.

Note For any NI-DNET LabVIEW application, make sure that all the open calls are
matched by an equal number of close calls. For example, if you have called the Open
DeviceNet Interface function twice, you must call the Close Object function twice as well,
passing in the handles returned from the open interface calls. Also, to ensure proper closure
of all NI-DNET objects, create your own stop button to stop your application, instead of
using the LabVIEW stop button from the menu bar.

Chapter 2 NI-DNET Functions — EasyIOConfig (Easy IO Config)

NI-DNET Programmer Reference Manual 2-8 ni.com

Parameter Descriptions
Interface Name

Device Configurations

Interface Configuration

Interface ObjHandle Out

Description Name of the DeviceNet interface as an ASCII string with format
"DNETx", where x is a decimal number starting at zero that indicates
which DeviceNet interface is being used. You associate DeviceNet
interface names with physical ports using Measurement and Automation
Explorer (MAX).

Values "DNET0", "DNET1", … "DNET63"
In LabVIEW, you select the interface name from an enumerated list.

Description Array of NI-DNET I/O Object configuration clusters. For a description
of individual elements within the I/O cluster, refer to the
ncOpenDnetIO parameter description.

Values Refer to the ncOpenDnetIO input parameters description for value
range applicable to each configuration parameter.

Description Configuration cluster for NI-DNET Interface Object. For a description
of individual elements within the interface cluster, refer to the
ncOpenDnetIntf parameter description.

Values Refer to the ncOpenDnetIntf input parameters description for allowed
values for each cluster element.

Description If the Easy IO Config function is successful, a handle to the newly
opened Interface Object is returned in Interface ObjHandle Out.
This handle is used with all subsequent function calls for that Interface
Object.

Values The encoding of object handles is internal to NI-DNET.

Chapter 2 NI-DNET Functions — EasyIOConfig (Easy IO Config)

© National Instruments Corporation 2-9 NI-DNET Programmer Reference Manual

Device ObjHandle Out

Examples
LabVIEW
Open Interface Object "DNET0" using baud rate 125000, MAC ID 5, and poll mode
Scanned. Open two I/O Objects, with MAC ID 6 and 9, and start the communication.

Description If the Easy IO Config function is successful, an array of I/O Object
handles is returned in Device ObjHandle Out. This array can be
indexed to retrieve individual I/O handles for data read and write.

Values The encoding of object handles is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncCloseObject (Close)

NI-DNET Programmer Reference Manual 2-10 ni.com

ncCloseObject (Close)

Purpose
Close an NI-DNET object.

Format
LabVIEW

C
NCTYPE_STATUS ncCloseObject(NCTYPE_OBJH ObjHandle)

Input
ObjHandle Object handle of an open Interface Object, Explicit

Messaging Object, or I/O Object

Output
None

Function Description
The ncCloseObject function closes an NI-DNET object when it no longer needs to be in
use, such as when the application is about to terminate. When an object is closed, NI-DNET
stops all pending operations for the object, and you can no longer use the ObjHandle in your
application.

If the object specified by ObjHandle has a notification pending, ncCloseObject disables
the notification by implicitly calling either ncCreateNotification or
ncCreateOccurrence with DesiredState zero.

When ncCloseObject has been called for all open NI-DNET objects, NI-DNET
stops all DeviceNet communication (ncCloseObject issues an implicit call to
ncOperateDnetIntf with Opcode NC_OP_STOP).

Chapter 2 NI-DNET Functions — ncCloseObject (Close)

© National Instruments Corporation 2-11 NI-DNET Programmer Reference Manual

Parameter Descriptions
ObjHandle

Examples
LabVIEW
Close an NI-DNET object.

C
Close an NI-DNET object.

NCTYPE_STATUS status;

NCTYPE_OBJH objh;
status = ncCloseObject (objh);

Description ObjHandle must contain an object handle returned from the
ncOpenDnetIntf, ncOpenDnetExplMsg, or ncOpenDnetIO
function.

Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

NI-DNET Programmer Reference Manual 2-12 ni.com

ncConvertForDnetWrite (Convert For DeviceNet Write)

Purpose
Convert an appropriate LabVIEW data type for writing data bytes on the DeviceNet network.

Format
LabVIEW

C
Not applicable, but see Examples at the end of this section

Input
DnetData in Initial data bytes to write on the DeviceNet network

DnetType DeviceNet data type to convert into

ByteOffset Byte offset of the DeviceNet member to convert into

8[TF] in LabVIEW array of 8 TF to convert from

I32/I16/I8 in LabVIEW I32, I16, or I8 to convert from

U32/U16/U8 in LabVIEW U32, U16, or U8 to convert from

DBL/SGL in LabVIEW DBL or SGL to convert from

abc in LabVIEW string to convert from

Output
DnetData out DeviceNet data bytes (with member inserted)

Function Description
Many fundamental differences exist between the encoding of a DeviceNet data type and its
equivalent data type in LabVIEW. For example, for a 32-bit integer, the DeviceNet DINT data
type uses Intel byte ordering (lowest byte first), and the equivalent LabVIEW I32 data type
uses Motorola byte ordering (highest byte first).

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-13 NI-DNET Programmer Reference Manual

ncConvertForDnetWrite takes an initial sequence of bytes to write on the DeviceNet
network, and given the byte offset and DeviceNet data type for a specific data member,
converts an appropriate LabVIEW data type for placement into those data bytes. You provide
initial data bytes using DnetData in, convert a LabVIEW data type for each data member
changed by your LabVIEW program (possibly replacing all initial bytes with LabVIEW
data), then write the bytes onto the DeviceNet network.

You typically use ncConvertForDnetWrite with the following NI-DNET functions:

• ncWriteDnetIO—Convert a LabVIEW data type for placement into the output
assembly.

• ncSetDnetAttribute—Convert a LabVIEW data type to set as the attribute value.

• ncWriteDnetExplMsg—Convert a LabVIEW data type for placement into the service
request.

Since DeviceNet data types are similar to C language data types, C programming does not
need a function like ncConvertForDnetWrite. By using standard C language pointer
manipulations, you can convert an appropriate C language data type for writing as a
DeviceNet data member. For more information about converting C language data types,
refer to the Examples at the end of this section.

Parameter Descriptions
DnetData in

Description Initial data bytes to write on the DeviceNet network. These data bytes
are normally created as a constant array of U8, then given valid default
values. If you need to convert multiple DeviceNet data members, you
can wire this input terminal from the DnetData out output terminal of
a previous use of this function.

If you replace all initial data bytes using this function, the default values
are unimportant, and you can leave them as zero.

Values Initial data bytes to write on the DeviceNet network
or
DnetData out output terminal of a previous use of this function

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

NI-DNET Programmer Reference Manual 2-14 ni.com

DnetType

Description An enumerated list from which you choose the DeviceNet data type to
convert into. For each DeviceNet data type, the appropriate LabVIEW
data type is listed in parentheses.

When you select the DeviceNet data type BOOL,
ncConvertForDnetWrite converts the byte indicated by
ByteOffset from an array of eight LabVIEW Booleans. You can index
into this array to change specific Boolean members. The Boolean at
index zero is the least significant bit (bit 0), the Boolean at index one is
the next least significant (bit 1), and so on.

Values BOOL (8[TF])

SINT (I8)

INT (I16)

DINT (I32)

USINT (U8)

UINT (U16)

UDINT (U32)

REAL (SGL)

LREAL (DBL)

SHORT_STRING (abc)

STRING (abc)

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-15 NI-DNET Programmer Reference Manual

ByteOffset

8[TF] in

I32/I16/I8 in

Description Byte offset of the DeviceNet member to convert into. For the DeviceNet
data member you want to replace, this is the byte offset in
DnetData in where the member begins. Byte offsets start at zero.

You can find information on the format of your DeviceNet data in the
following functions:

• ncWriteDnetIO—Specification for your device’s output
assembly.

• ncSetDnetAttribute—Data type of the attribute. Unless the
attribute’s DeviceNet data type is a structure or array, the value for
ByteOffset is always 0.

• ncWriteDnetExplMsg—Specification for the service data of the
explicit message request.

Values 0 to 255

Description If the selected DnetType is BOOL, this input terminal provides the
LabVIEW data to convert into a DeviceNet data member. The LabVIEW
data type for this input terminal is an array of eight LabVIEW Booleans,
indicated as 8[TF]. You can index into this array to change specific
Boolean members. The Boolean at index zero is the least significant bit
(bit 0), the Boolean at index one is the next least significant (bit 1), and
so on.

Values LabVIEW data to convert into a DeviceNet data member

Description If the selected DnetType is SINT, INT, or DINT, this input terminal
provides the LabVIEW data to convert into a DeviceNet data member.
Although the LabVIEW data type for this input terminal is I32, it can
be coerced automatically from I16 or I8.

Values LabVIEW data to convert into a DeviceNet data member

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

NI-DNET Programmer Reference Manual 2-16 ni.com

U32/U16/U8 in

DBL/SGL in

abc in

DnetData out

Description If the selected DnetType is USINT, UINT, or UDINT, this input terminal
provides the LabVIEW data to convert into a DeviceNet data member.
Although the LabVIEW data type for this input terminal is U32, it can
be coerced automatically from U16 or U8.

Values LabVIEW data to convert into a DeviceNet data member

Description If the selected DnetType is REAL or LREAL, this input terminal provides
the LabVIEW data to convert into a DeviceNet data member. Although
the LabVIEW data type for this input terminal is DBL, it can be coerced
automatically from SGL.

Values LabVIEW data to convert into a DeviceNet data member

Description If the selected DnetType is SHORT_STRING or STRING, this input
terminal provides the LabVIEW data to convert into a DeviceNet data
member. The LabVIEW data type for this input terminal is abc.

Values LabVIEW data to convert into a DeviceNet data member

Description DeviceNet data bytes (with member inserted). These data bytes are
written on the DeviceNet network using the ncWriteDnetIO,
ncSetDnetAttribute, or ncWriteDnetExplMsg function. If you
need to convert multiple DeviceNet data members, you can also wire
this output terminal into the DnetData in input terminal of a
subsequent use of this function.

Values Data input terminal of ncWriteDnetIO
or
AttrData input terminal of ncSetDnetAttribute
or
ServData input terminal of ncWriteDnetExplMsg
or
DnetData in input terminal of a subsequent use of this function

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-17 NI-DNET Programmer Reference Manual

Examples
LabVIEW
1. Use ncWriteDnetIO to write Command Assembly 1 to a Position Controller. In this

output assembly, the byte at offset 0 consists of 8 BOOL and the bytes at offset 4–7 consist
of a Target Position of type DINT. Use ncConvertForDnetWrite to convert
appropriate LabVIEW data types for these DeviceNet data members.

2. Set an attribute Foo using the ncSetDnetAttribute function. The attribute Foo is
contained in an object with class ID D5 hex, instance ID 1, attribute ID 5, and its
DeviceNet data type is LREAL. Use ncConvertForDnetWrite to convert the
appropriate LabVIEW data type for Foo.

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

NI-DNET Programmer Reference Manual 2-18 ni.com

C
1. Demonstrate the same conversions as LabVIEW example 1.

NCTYPE_UINT8 data[8];

NCTYPE_UINT8 I;

NCTYPE_INT32 TargetPos; /* DINT */

NCTYPE_BOOL Enable; /* BOOL */

NCTYPE_BOOL StartTraj; /* BOOL */

/* Initialize default values of zero. */

for (I = 0; I < 8; I++)

data[I] = 0;

/* If Enable is true, set bit 7 of byte 0. If StartTraj is

true, set bit 0 of byte 0. */

if (Enable == NC_TRUE)

data[0] |= 0x80;

if (StartTraj == NC_TRUE)

data[0] |= 0x01;

/* Take the address of the data byte at offset 4, cast that

address to point to the appropriate C language data type, then

dereference the pointer in order to store the value. */

Chapter 2 NI-DNET Functions — ncConvertForDnetWrite (Convert For DeviceNet Write)

© National Instruments Corporation 2-19 NI-DNET Programmer Reference Manual

*(NCTYPE_INT32 *)(&(data[4])) = TargetPos;

status = ncWriteDnetIO(objh, sizeof(data), data);

2. Demonstrate the same conversion as LabVIEW example 2.

NCTYPE_LREAL foo;

/* Conversion is performed automatically simply by passing in

a pointer to the appropriate C language data type. */

foo = 354654.4543;

status = ncSetDnetAttribute(objh, 0xD5, 0x01, 0x05, 100,
sizeof(foo), &foo);

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-20 ni.com

ncConvertFromDnetRead (Convert From DeviceNet Read)

Purpose
Convert data read from the DeviceNet network into an appropriate LabVIEW data type.

Format
LabVIEW

C
Not applicable, but see Examples at the end of this section

Input
DnetData in Data bytes read from the DeviceNet network

DnetType DeviceNet data type to convert from

ByteOffset Byte offset of the DeviceNet member to convert

Output
DnetData out DeviceNet data bytes (unchanged)

8[TF] out Converted LabVIEW array of 8 TF

I32/I16/I8 out Converted LabVIEW I32, I16, or I8

U32/U16/U8 out Converted LabVIEW U32, U16, or U8

DBL/SGL out Converted LabVIEW DBL or SGL

abc out Converted LabVIEW string

Function Description
Many fundamental differences exist between the encoding of a DeviceNet data type and its
equivalent data type in LabVIEW. For example, for a 32-bit integer, the DeviceNet DINT data
type uses Intel byte ordering (lowest byte first), and the equivalent LabVIEW I32 data type
uses Motorola byte ordering (highest byte first).

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

© National Instruments Corporation 2-21 NI-DNET Programmer Reference Manual

ncConvertFromDnetRead takes a sequence of bytes read from the DeviceNet network, and
given the byte offset and DeviceNet data type for a specific data member in those bytes,
converts that DeviceNet data member into an appropriate LabVIEW data type.

You typically use ncConvertFromDnetRead with the following NI-DNET functions:

• ncReadDnetIO—Convert a member of the input assembly to its LabVIEW data type.

• ncGetDnetAttribute—Convert the attribute to its LabVIEW data type.

• ncReadDnetExplMsg—Convert a member in the service response to its LabVIEW
data type.

Since DeviceNet data types are similar to C language data types, C programming does not
need a function like ncConvertFromDnetRead. By using standard C language pointer
manipulations, you can convert a DeviceNet data member into its appropriate C language data
type. For more information about converting DeviceNet data members into C language data
types, refer to the Examples at the end of this section.

Parameter Descriptions
DnetData in

Description Data bytes read from the DeviceNet network. These data bytes
are read from the DeviceNet network using ncReadDnetIO,
ncGetDnetAttribute, or ncReadDnetExplMsg. If you need to
convert multiple DeviceNet data members, you can wire this input
terminal from the DnetData out output terminal of a previous use
of this function.

Values Data output terminal of ncReadDnetIO
or
AttrData output terminal of ncGetDnetAttribute
or
ServData output terminal of ncReadDnetExplMsg
or
DnetData out output terminal of a previous use of this function

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-22 ni.com

DnetType

Description An enumerated list from which you select the DeviceNet data type to
convert. For each DeviceNet data type, the list displays the resulting
LabVIEW data type in parentheses.

When you select the DeviceNet data type BOOL,
ncConvertFromDnetRead converts the byte indicated by
ByteOffset into an array of eight LabVIEW Booleans. You can
index into this array to use specific Boolean members. The Boolean
at index zero is the least significant bit (bit 0), the Boolean at index
one is the next least significant (bit 1), and so on.

Values BOOL (8[TF])

SINT (I8)

INT (I16)

DINT (I32)

USINT (U8)

UINT (U16)

UDINT (U32)

REAL (SGL)

LREAL (DBL)

SHORT_STRING (abc)

STRING (abc)

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

© National Instruments Corporation 2-23 NI-DNET Programmer Reference Manual

ByteOffset

DnetData out

8[TF] out

Description Byte offset of the DeviceNet member to convert. For the DeviceNet data
member you want to convert, this is the byte offset in DnetData in
where the member begins. Byte offsets start at zero.

You can find information on the format of your DeviceNet data in the
following functions:

• ncReadDnetIO—Specification for your device’s input assembly.

• ncGetDnetAttribute—Data type of the attribute. Unless the
attribute’s DeviceNet data type is a structure or array, the value
for ByteOffset is always 0.

• ncReadDnetExplMsg—Specification for the service data of the
explicit message response.

Values 0 to 255

Description DeviceNet data bytes (unchanged). The data bytes of DnetData in are
passed through the VI to this output terminal unchanged. To convert
another DeviceNet data member, this data can be passed on to another
call to this function.

Values Same as DnetData in

Description If the selected DnetType is BOOL, this output terminal provides the
converted DeviceNet data member. The LabVIEW data type for this
output terminal is an array of eight LabVIEW Booleans, indicated as
8[TF]. You can index into this array to use specific Boolean members.
The Boolean at index zero is the least significant bit (bit 0), the Boolean
at index one is the next least significant (bit 1), and so on.

Values Converted DeviceNet data member

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-24 ni.com

I32/I16/I8 out

U32/U16/U8 out

DBL/SGL out

abc out

Examples
LabVIEW
1. Use ncReadDnetIO to read Response Assembly 1 from a Position Controller. In this

input assembly, the byte at offset 0 consists of 8 BOOL, and the bytes at offset 4–7 consist
of an Actual Position of type DINT. Use ncConvertFromDnetRead to convert these
DeviceNet data members into appropriate LabVIEW data types.

Description If the selected DnetType is SINT, INT, or DINT, this output terminal
provides the converted DeviceNet data member. Although the
LabVIEW data type for this output terminal is I32, it can be coerced
automatically to I16 or I8.

Values Converted DeviceNet data member

Description If the selected DnetType is USINT, UINT, or UDINT, this output terminal
provides the converted DeviceNet data member. Although the
LabVIEW data type for this output terminal is U32, it can be coerced
automatically to U16 or U8.

Values Converted DeviceNet data member

Description If the selected DnetType is REAL or LREAL, this output terminal
provides the converted DeviceNet data member. Although the
LabVIEW data type for this output terminal is DBL, it can be coerced
automatically to SGL.

Values Converted DeviceNet data member

Description If the selected DnetType is SHORT_STRING or STRING, this output
terminal provides the converted DeviceNet data member. The LabVIEW
data type for this output terminal is abc.

Values Converted DeviceNet data member

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

© National Instruments Corporation 2-25 NI-DNET Programmer Reference Manual

2. Get the Device Type attribute using the ncGetDnetAttribute function. The Device
Type is contained in the Identity Object (class ID 1, instance ID 1, attribute ID 2), and its
DeviceNet data type is UINT. Use ncConvertFromDnetRead to convert the Device
Type into an appropriate LabVIEW data type.

Chapter 2 NI-DNET Functions — ncConvertFromDnetRead (Convert From DeviceNet Read)

NI-DNET Programmer Reference Manual 2-26 ni.com

C
1. Demonstrate the same conversions as LabVIEW example 1.

NCTYPE_UINT8 data[8];

NCTYPE_INT32 ActualPos; /* DINT */

NCTYPE_BOOL CurrentDir; /* BOOL */

NCTYPE_BOOL TrajInProg; /* BOOL */

status = ncReadDnetIO(objh, sizeof(data), data);

/* Take the address of the data byte at offset 4, cast that

address to point to the appropriate C language data type, then

dereference the pointer. */

ActualPos = *(NCTYPE_INT32 *)(&(data[4]));

/* If bit 4 of byte 0 is set, then CurrentDir is true. If bit

0 of byte 0 is set, the TrajInProg is true. */

CurrentDir = (data[0] & 0x10) ? NC_TRUE : NC_FALSE;

TrajInProg = (data[0] & 0x01) ? NC_TRUE : NC_FALSE;

2. Demonstrate the same conversion as LabVIEW example 2.

NCTYPE_UINT16 device_type;

NCTYPE_UINT16 actual_length;
/* Conversion is performed automatically simply by passing in

a pointer to the appropriate C language data type. */

status = ncGetDnetAttribute(objh, 0x01, 0x01, 0x02, 100,
sizeof(device_type), &device_type,
&actual_length);

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-27 NI-DNET Programmer Reference Manual

ncCreateNotification (Create Notification)

Purpose
Create a notification callback for an object (C only).

Format
LabVIEW
Not applicable; see ncCreateOccurrence (Create Occurrence)

C
NCTYPE_STATUS ncCreateNotification(NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,

NCTYPE_DURATION Timeout,

NCTYPE_ANY_P RefData,

NCTYPE_NOTIFY_CALLBACK

Callback)

Input
ObjHandle Object handle of an open Explicit Messaging Object or

I/O Object

DesiredState States for which notification is called

Timeout Number of milliseconds to wait for one of the desired states

RefData Pointer to user-specified reference data

Callback Address of your callback function

Output
None

Function Description
ncCreateNotification creates a notification callback for the object specified by
ObjHandle. The NI-DNET driver uses the notification callback to communicate state
changes to your application. The ncCreateNotification function does not apply to
LabVIEW programming. Use the ncCreateOccurrence function to receive notifications
within LabVIEW.

You commonly use ncCreateNotification to receive notifications when new input
data is available for an I/O Object. Within your notification callback function, you call
ncReadDnetIO to read the new input data, perform any needed calculations for that data,
call ncWriteDnetIO to provide output data, then return from the callback function.

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-28 ni.com

You normally use ncCreateNotification when you want to let other code to execute
while waiting for NI-DNET states, especially when the other code does not call NI-DNET
functions. If you do not need such background execution, ncWaitForState offers better
overall performance. You cannot use ncWaitForState at the same time as
ncCreateNotification.

This function is not supported for Visual Basic 6.

The Status parameter of your callback function indicates any error detected by NI-DNET.
You should always check this Status parameter prior to checking the CurrentState
parameter of your callback function.

When ncCreateNotification returns successfully, NI-DNET calls your notification
callback function whenever one of the states specified by DesiredState occurs in the
object. If DesiredState is 0, NI-DNET disables notifications for the object specified by
ObjHandle.

Parameter Descriptions
ObjHandle

Description ObjHandle must contain an object handle returned from
ncOpenDnetExplMsg or ncOpenDnetIO.

 Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-29 NI-DNET Programmer Reference Manual

DesiredState

Description States for which notification is called. So that notification can be enabled
for multiple states simultaneously, a single bit represents each state. For
example, if NI-DNET provides states with values of hex 1 and hex 4,
DesiredState of hex 5 enables notification for both states.

ReadAvail for the I/O Object

For the I/O Object, the ReadAvail state sets when a new input
message is received from the network. The ReadAvail state clears
when you call ncReadDnetIO. For example, for a change-of-state
(COS) I/O connection, the notification occurs when a COS input
message is received.

The typical behavior for your callback function is to call
ncReadDnetIO to read the new input data, perform any
calculations needed, call ncWriteDnetIO to provide output
data, then return from the callback function.

ReadAvail for the Explicit Messaging Object

For the Explicit Messaging Object, the ReadAvail state sets when
an explicit message response is received from the network. The
ReadAvail state clears when you call ncReadDnetExplMsg.
An explicit message response is received only after you send an
explicit message request using ncWriteDnetExplMsg.

Although using a notification for an explicit message response
allows for execution of other code while waiting, it is often
more straightforward to use the following sequence of calls:
ncWriteDnetExplMsg, ncWaitForState,
ncReadDnetExplMsg. This is the sequence used internally
by ncGetDnetAttribute and ncSetDnetAttribute.

The ReadAvail state is not needed when using the explicit
messaging functions ncGetDnetAttribute and
ncSetDnetAttribute because both of these functions
wait for the explicit message response internally.

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-30 ni.com

Description
(Continued)

Established for the Explicit Messaging Object

For the Explicit Messaging Object, the Established state is
clear (not established) before you start communication using
ncOperateDnetIntf. After you start communication, the
Established state remains clear until the explicit message
connection has been successfully established with the remote
DeviceNet device. After the explicit message connection has been
established, the Established state sets and remains set for as long
as the explicit message connection is open.

Until the Established state is set for the Explicit
Messaging Object, all calls to ncGetDnetAttribute,
ncSetDnetAttribute, or ncWriteDnetExplMsg return the
error CanErrNotStarted. Before you call any of these functions
in your application, you must first wait for the Established state
to set.

After the Established state is set, unless communication
problems occur with the device (CanErrFunctionTimeout),
it remains set until you stop communication using
ncOperateDnetIntf.

While waiting for one of the above states, if an error occurs (such as
a communication error or an initialization error), the notification
returns immediately with the appropriate error code. For example,
if you call ncCreateNotification with DesiredState of
ReadAvail, the notification function will return when data is
available for a read, or when a DeviceNet communication error
(such as connection timeout) is detected.

 Values A combination of the following bit values:

1 hex (ReadAvail state, constant NC_ST_READ_AVAIL)

8 hex (Established, constant NC_ST_ESTABLISHED)

In the LabWindows™/CVI™ function panel, to facilitate combining
multiple states, you can select a combination from an enumerated list of
all valid combinations. This list contains the names of each state in the
combination, such as ReadAvail or Established.

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-31 NI-DNET Programmer Reference Manual

Timeout

RefData

Description Number of milliseconds to wait for one of the desired states. If the
timeout expires before one of the desired states occurs, your notification
function is called with CurrentState of 0 and Status of
CanErrFunctionTimeout.

Use the special timeout value of FFFFFFFF hex to wait indefinitely.

Values 1 to 200000
or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Description RefData provides a pointer that is passed to all calls of your notification
callback function. It is typically used to provide the address of globally
declared reference data for use within the notification callback. For
example, for the ReadAvail state, RefData is often the data buffer
which you pass to ncReadDnetIO to read available data. If the
notification callback does not need reference data, you can set RefData
to NULL.

Values Pointer to any globally declared data variable
or
NULL

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-32 ni.com

Callback

Description This is the address of a callback function within your application source
code. Within the code for the callback function, you can call any of the
NI-DNET functions except for ncCreateNotification and
ncWaitForState.

Declare this function using the following C language prototype.

NCTYPE_STATE _NCFUNC_ Callback(

NCTYPE_OBJH ObjHandle,

NCTYPE_ST444ATE CurrentState,

NCTYPE_STATUS Status,

NCTYPE_ANY_P RefData);

In the declaration for your callback, the constant _NCFUNC_ is required
for your compiler to declare the function such that it can be called by the
NI-DNET device driver.

Parameter descriptions for Callback

ObjHandle

Object handle originally passed to ncCreateNotification.
This identifies the object generating the notification, which is useful
when you use the same callback function for multiple objects.

CurrentState

Current state of the object. If one of the desired states occurs, it
provides the current value of the ReadAvail and Established
states. If the Timeout expires before one of the desired states
occurs, it has the value 0.

Status

Current status of the object. If one of the desired states occurs, it has
the value 0 (DnetSuccess). If the Timeout expires before one of
the desired states occurs, it has the value BFF62001 hex
(CanErrFunctionTimeout).

RefData

Pointer to your reference data as originally passed to
ncCreateNotification.

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-33 NI-DNET Programmer Reference Manual

Description
(Continued)

Return Value from Callback

The value you return from the callback indicates the desired states
to re-enable for notification. If you want to continue to receive
notifications, return the same value as the original DesiredState
parameter. If you no longer want to receive notifications, return a
value of 0.

If you return a nonzero value from the callback, and one of those
states is still set, the callback is invoked again immediately after you
return. For example, if you return ReadAvail from the callback
without calling ncReadDnetIO to read the available data, the
callback is invoked again.

Information Specific to LabWindows/CVI

When the NI-DNET device driver calls your notification callback,
it does so in a separate thread within the LabWindows/CVI process.
Your application’s front panel indicators and controls can only be
accessed within the main thread of the LabWindows/CVI process.
Although you can call NI-DNET functions and perform generic
C calculations in your notification callback, you cannot call
LabWindows/CVI functions which access the front panel (the User
Interface Library). To use the LabWindows/CVI User Interface
Library, save any data needed for front panel indicators using
global variables, then register a deferred callback using the
LabWindows/CVI PostDeferredCall function. Since a
LabWindows/CVI deferred callback executes in the main thread of
the LabWindows/CVI process, you can call any LabWindows/CVI
function, including the User Interface Library.

Information Specific to Microsoft, Borland, and Other C Compilers

When the NI-DNET device driver calls your notification callback,
it does so in a separate thread within your process. Therefore, it has
access to any process global data, but not thread local data. If your
callback function needs to access global variables, you must protect
that access using synchronization primitives (such as semaphores)
because your callback is running in a different thread context. For
an explanation of these concepts and other multithreading issues,
refer to the online help of the Microsoft Win32 Software
Development Kit (SDK).

Callback (Continued)

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

NI-DNET Programmer Reference Manual 2-34 ni.com

Example
C
Create a notification for the ReadAvail state. Use a timeout of 10 seconds.

NCTYPE_UINT8 DataBuffer[20];

NCTYPE_STATE _NCFUNC_ MyReadCallback (

NCTYPE_OBJH ObjHandle,

NCTYPE_STATE CurrentState,

NCTYPE_STATUS Status,

NCTYPE_ANY_P RefData) {

if (Status == DnetSuccess) {

Status = ncReadDnetIO(ObjHandle, 20, RefData);

.

.

.

}

.

.

.

return(NC_ST_READ_AVAIL);

}

Values Address of a callback function within your application source code.

For example, if your function is declared with the name
MyReadCallback, you would pass MyReadCallback as the
Callback parameter.

Callback (Continued)

Chapter 2 NI-DNET Functions — ncCreateNotification (Create Notification)

© National Instruments Corporation 2-35 NI-DNET Programmer Reference Manual

void main() {

NCTYPE_STATUS status;

NCTYPE_OBJH objh;

.

.

.

status = ncCreateNotification(objh, NC_ST_READ_AVAIL,

10000, DataBuffer, MyReadCallback);

.

.

.

}

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

NI-DNET Programmer Reference Manual 2-36 ni.com

ncCreateOccurrence (Create Occurrence)

Purpose
Create a notification occurrence for an object (LabVIEW only).

Format
LabVIEW

C
Not applicable; see ncCreateNotification (Create Notification)

Input
ObjHandle Object handle of an open Explicit Messaging Object or

I/O Object

DesiredState States for which notification occurs

Output
Occurrence Occurrence that can be used with LabVIEW Wait on

Occurrence VI.

Function Description
ncCreateOccurrence creates a notification occurrence for the object specified by
ObjHandle. The NI-DNET driver uses the occurrence to communicate state changes to
your application. The ncCreateOccurrence function is not applicable to C programming.
Use ncCreateNotification to receive notifications within C.

The most common use of ncCreateOccurrence is to receive an occurrence when new input
data is available for an I/O Object. When the occurrence is received, you call ncReadDnetIO
to read the new input data, perform any calculations needed, call ncWriteDnetIO to provide
output data, then wait for the occurrence again. By using the occurrence with I/O Objects,
your application executes at the same rate as the DeviceNet I/O communication.

When ncCreateOccurrence returns successfully, the notification occurrence is
set whenever one of the states specified by DesiredState occurs in the object. If
DesiredState is 0, notifications are disabled for the object specified by ObjHandle.

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

© National Instruments Corporation 2-37 NI-DNET Programmer Reference Manual

The LabVIEW occurrence will trigger for any error detected by NI-DNET. When the
occurrence triggers, your application normally calls a read or write function to access
DeviceNet data. If the occurrence triggers due to an error instead of an actual ReadAvail
or Established state, the read or write function will return the error in its outgoing error
cluster (Error out).

Because the underlying LabVIEW implementation of occurrences can have an adverse
impact on determinism and jitter, this function is not recommended for use on LabVIEW
Real-Time (RT).

Parameter Descriptions
ObjHandle

Description ObjHandle must contain an object handle returned from
ncOpenDnetExplMsg or ncOpenDnetIO.

In LabVIEW, ObjHandle passes through the VI as an output so
that it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

DesiredState

Description States for which notification occurs. Each state is represented by a single
bit so that you can enable notification for multiple states simultaneously.
For example, if NI-DNET provides states with values of hex 1 and hex 4,
DesiredState of hex 5 enables notification for both states.

ReadAvail for the I/O Object

For the I/O Object, the ReadAvail state sets when a new input
message is received from the network. The ReadAvail state clears
when you call ncReadDnetIO. For example, for a change-of-state
(COS) I/O connection, the notification occurs when a COS input
message is received.

When the occurrence is received, the typical behavior is to
call ncReadDnetIO to read the new input data, perform any
calculations needed, call ncWriteDnetIO to provide output data,
then wait for the occurrence again.

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

NI-DNET Programmer Reference Manual 2-38 ni.com

Description
(Continued)

ReadAvail for the Explicit Messaging Object

For the Explicit Messaging Object, the ReadAvail state sets
when an explicit message response is received from the network.
The ReadAvail state clears when you call ncReadDnetExplMsg.
You receive an explicit message response only after you send an
explicit message request using ncWriteDnetExplMsg.

Although using a notification for an explicit message response
allows for execution of other code while waiting, it is often
more straightforward to use the following sequence of calls:
ncWriteDnetExplMsg, ncWaitForState,
ncReadDnetExplMsg. This is the sequence used internally
by ncGetDnetAttribute and ncSetDnetAttribute.

The ReadAvail state is not needed when using the explicit
messaging functions ncGetDnetAttribute and
ncSetDnetAttribute because both of these functions wait
for the explicit message response internally.

Established for the Explicit Messaging Object

For the Explicit Messaging Object, the Established state is
clear (not established) before you start communication using
ncOperateDnetIntf. After you start communication, the
Established state remains clear until the explicit message
connection has been successfully established with the remote
DeviceNet device. After the explicit message connection has been
established, the Established state sets and remains set for as long
as the explicit message connection is open.

Until the Established state is set for the Explicit
Messaging Object, all calls to ncGetDnetAttribute,
ncSetDnetAttribute, or ncWriteDnetExplMsg return the
error CanErrNotStarted. Before you call any of these functions
in your application, you must first wait for the Established state
to set.

After the Established state is set, unless communication
problems occur with the device (CanErrFunctionTimeout),
it remains set until you stop communication using
ncOperateDnetIntf.

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncCreateOccurrence (Create Occurrence)

© National Instruments Corporation 2-39 NI-DNET Programmer Reference Manual

Occurrence

Example
LabVIEW
Create an occurrence for the ReadAvail state.

Description
(Continued)

While waiting for one of the above states, if an error occurs (such as
a communication error or an initialization error), the occurrence
returns immediately with the appropriate error code. For example,
if you call ncCreateOccurrence with DesiredState of
ReadAvail, the occurrence function will return when data is
available for a read, or when a DeviceNet communication error
(such as connection timeout) is detected.

Values A combination of the following bit values.

1 hex (ReadAvail state, constant NC_ST_READ_AVAIL)

8 hex (Established, constant NC_ST_ESTABLISHED)

To facilitate combining multiple states, you can select a combination
from an enumerated list of all valid combinations. This list contains
the names of each state in the combination, such as ReadAvail or
Established.

Description This output is wired into the LabVIEW Wait on Occurrence VI.
The Wait on Occurrence VI takes the Occurrence, a timeout in
milliseconds, and a flag indicating whether to ignore a pending state. For
more information on Wait on Occurrence, refer to the LabVIEW
online reference.

After the occurrence is created successfully, it sets each time one of the
desired states goes from false to true. When you no longer want to wait
on the occurrence (such as when terminating your application), call
ncCreateOccurrence with DesiredState zero (constant Clear
Occurrence).

Values The encoding of Occurrence is internal to LabVIEW.

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-40 ni.com

ncGetDnetAttribute (Get DeviceNet Attribute)

Purpose
Get an attribute value from a DeviceNet device using an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncGetDnetAttribute(

NCTYPE_OBJH ObjHandle,
NCTYPE_UINT16 ClassId,
NCTYPE_UINT16 InstanceId,
NCTYPE_UINT8 AttributeId,
NCTYPE_DURATION Timeout,
NCTYPE_UINT16 SizeofAttrData,
NCTYPE_ANY_P AttrData,
NCTYPE_UINT16_P ActualAttrDataLength
NCTYPE_UINT16_P DeviceError);

Input
ObjHandle Object handle of an open Explicit Messaging Object

ClassId Identifies the class which contains the attribute

InstanceId Identifies the instance which contains the attribute

AttributeId Identifies the attribute to get

Timeout Maximum time to wait for response from device

SizeofAttrData Size of AttrData buffer in bytes (C only)

Output
AttrData Attribute value received from device

ActualAttrDataLength Actual number of attribute data bytes returned

DeviceError Error codes from device error response

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

© National Instruments Corporation 2-41 NI-DNET Programmer Reference Manual

Function Description
ncGetDnetAttribute gets the value of an attribute from a DeviceNet device using an
Explicit Messaging Object.

ncGetDnetAttribute executes the Get Attribute Single service on a remote DeviceNet
device.

The format of the data returned in AttrData is defined by the DeviceNet data type in the
attribute’s description. When using LabVIEW, the ncConvertFromDnetRead function can
convert this DeviceNet data type into an appropriate LabVIEW data type. When using C,
AttrData can point to a variable of the appropriate data type as specified in Chapter 1,
NI-DNET Data Types.

Parameter Descriptions
ObjHandle

ClassId

Description ObjHandle must contain an object handle returned from the
ncOpenDnetExplMsg function.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifies the class which contains the attribute. For descriptions and
identifiers for each standard DeviceNet class, refer to the DeviceNet
Specification (Volume 2, Chapter 6, The DeviceNet Object Library).
Vendor-specific classes are documented by the device vendor. Although
the DeviceNet Specification allows 16-bit class IDs, most class IDs are
8-bit. NI-DNET automatically uses the class ID size (16-bit or 8-bit) that
is appropriate for your device.

Values 00 to FFFF hex

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-42 ni.com

InstanceId

AttributeId

Timeout

Description Identifies the instance which contains the attribute. Instance ID 0 is used
to get an attribute from the class itself. Other instance IDs typically are
numbered starting at 1. For example, the primary Identity Object in a
device uses instance ID 1. Although the DeviceNet Specification
allows 16-bit instance IDs, most instance IDs are 8-bit. NI-DNET
automatically uses the instance ID size (16-bit or 8-bit) that is
appropriate for your device.

Values 00 to FFFF hex

Description Identifies the attribute to get. Attribute IDs are listed in the class and
instance descriptions in the DeviceNet Specification. The attribute’s
description also lists the DeviceNet data type for the attribute’s value.

Values 00 to FF hex

Description Maximum time to wait for response from device. To get the attribute
from the device, an explicit message request for the Get Attribute Single
service is sent to the device. After sending the service request, this
function must wait for the explicit message response for Get Attribute
Single. Timeout specifies the maximum number of milliseconds to wait
for the response before giving up. If the timeout expires before the
response is received, this function returns a status of BFF62001 hex
(CanErrFunctionTimeout).

For most DeviceNet devices, a Timeout of 100 ms is appropriate.

The special timeout value of FFFFFFFF hex is used to wait indefinitely.

Values 1 to 1000
or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

© National Instruments Corporation 2-43 NI-DNET Programmer Reference Manual

SizeofAttrData

AttrData

ActualAttrDataLength

Description For C, this is the size of the buffer referenced by AttrData. It is used to
verify that you have enough bytes available to store the attribute data.
This size is normally obtained using the C language sizeof function
and has no direct relation to the number of bytes received on the
network.

For LabVIEW, since the buffer for AttrData is allocated automatically
by NI-DNET, this size is not needed.

The number of bytes allocated for AttrData should be large enough
to hold the maximum number of data bytes defined for the attribute.

Values sizeof (buffer referenced by AttrData)

Description Attribute value received from device.

The format of the data returned in AttrData is defined by the
DeviceNet data type in the attribute’s description. When using
LabVIEW, the ncConvertFromDnetRead function can convert this
DeviceNet data type into an appropriate LabVIEW data type. When
using C, AttrData can point to a variable of the appropriate data type
as specified in Chapter 1, NI-DNET Data Types.

The number of attribute data bytes returned is the smaller of
SizeofAttrData and ActualAttrDataLength.

Values Attribute data bytes

Description Actual number of attribute data bytes returned. This length is obtained
from the actual Get Attribute Single response message. If this length
is greater than SizeofAttrData, only SizeofAttrData bytes
are returned in AttrData. If this length is less than or equal to
SizeofAttrData, ActualAttrDataLength bytes are valid
in AttrData.

Values 0 to 240

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-44 ni.com

DeviceError

Description Error codes from device’s error response.

If the remote device responds successfully to the Get Attribute Single
service, the return status is 0 (DnetSuccess), and DeviceError
returns 0.

If the remote device returns an error response for the Get
Attribute Single service, the return status is BFF62014 hex
(DnetErrErrorResponse), and DeviceError returns the error
codes from the response.

The General Error Code from the device’s error response is returned in
the low byte of DeviceError. Common values for General Error Code
include Attribute Not Supported (14 hex), Object Does Not Exist
(16 hex), and Invalid Attribute Value (09 hex).

The Additional Code from the device’s error response is returned in the
high byte of DeviceError. The Additional Code provides additional
information that further describes the error. If no additional information
is needed, the value FF hex is placed into this field.

Values for the General Error Code and Additional Code are documented
in the DeviceNet Specification. Common error code values are found in
Appendix H, DeviceNet Error Codes, in the DeviceNet Specification.
Object-specific error codes are listed in the object description.
Vendor-specific error codes are listed in your device’s documentation.

Values Error codes from the device’s error response.

Chapter 2 NI-DNET Functions — ncGetDnetAttribute (Get DeviceNet Attribute)

© National Instruments Corporation 2-45 NI-DNET Programmer Reference Manual

Examples
LabVIEW
Get the Serial Number attribute using an Explicit Messaging Object. The Serial Number is
contained in the Identity Object (class ID 1, instance ID 1, attribute ID 6). The DeviceNet
data type for Device Type is UDINT, for which the LabVIEW data type U32 should be used.
The Timeout is 100 ms.

C
Get the Device Type attribute using the Explicit Messaging Object referenced by objh. The
Device Type is contained in the Identity Object (class ID 1, instance ID 1, attribute ID 2).
The DeviceNet data type for Device Type is UINT, for which the NI-DNET data type
NCTYPE_UINT16 should be used.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_UINT16 device_type;
NCTYPE_UINT16 actual_length;
NCTYPE_UINT16 device_error;
status = ncGetDnetAttribute(objh, 0x01, 0x01, 0x02, 100,

sizeof(device_type), &device_type,
&actual_length, &device_error);

Chapter 2 NI-DNET Functions — ncGetDriverAttr (Get Driver Attribute)

NI-DNET Programmer Reference Manual 2-46 ni.com

ncGetDriverAttr (Get Driver Attribute)

Purpose
Get the value of an attribute in the NI-DNET driver.

Format
LabVIEW

C
NCTYPE_STATUS ncGetDriverAttr (NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,

NCTYPE_UINT32 SizeofAttr,

NCTYPE_ANY_P Attr)

Input
ObjHandle Object handle of an open Explicit Messaging Object,

I/O Object, or Interface Object

AttrId Identifier of the attribute to get

SizeofAttr Size of the Attr buffer in bytes (C only)

Output
Attr Returned attribute value

Function Description
ncGetDriverAttr gets the value of an attribute in the NI-DNET driver software. Within
NI-DNET objects, attributes represent configuration settings, status, and other information.

Since you only need to access NI-DNET driver attributes under special circumstances,
ncGetDriverAttr is seldom used. For information about the attributes of each NI-DNET
object, refer to Chapter 3, NI-DNET Objects.

ncGetDriverAttr only applies to the NI-DNET software on your computer and cannot be
used to get an attribute from a remote DeviceNet device. To get an attribute from a remote
DeviceNet device, use the ncGetDnetAttribute function.

Chapter 2 NI-DNET Functions — ncGetDriverAttr (Get Driver Attribute)

© National Instruments Corporation 2-47 NI-DNET Programmer Reference Manual

 Parameter Descriptions
ObjHandle

AttrId

SizeofAttr

Attr

Description ObjHandle must contain an object handle returned from
ncOpenDnetExplMsg, ncOpenDnetIntf, or ncOpenDnetIO.

In LabVIEW, ObjHandle passes through the VI as an output so
that it can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifier of the NI-DNET attribute. Supported attribute identifiers
for each NI-DNET object are listed in Chapter 3, NI-DNET Objects.

Values 80000000 to 8000FFFF hex (high bit differentiates from
DeviceNet IDs)

Description For C, this is the size of the buffer referenced by Attr. It is used to verify
that you have enough bytes available to store the attribute’s value. This
size is normally obtained using the C language sizeof function.

For LabVIEW, since the buffer for Attr is allocated automatically by
NI-DNET, this size is not needed.

Values sizeof (buffer referenced by Attr)

Description Returned attribute value. The value is usually returned in an unsigned
32-bit integer (and thus Attr is of type NCTYPE_UINT32_P).

Values Value of NI-DNET attribute

Chapter 2 NI-DNET Functions — ncGetDriverAttr (Get Driver Attribute)

NI-DNET Programmer Reference Manual 2-48 ni.com

Examples
LabVIEW
Get the DeviceNet protocol version supported by NI-DNET.

C
Get the version of the NI-DNET software using the Interface Object referenced by objh.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_VERSION swver;
status = ncGetDriverAttr(objh, NC_ATTR_SOFTWARE_VERSION,

sizeof(swver), &swver);

Chapter 2 NI-DNET Functions — ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

© National Instruments Corporation 2-49 NI-DNET Programmer Reference Manual

ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

Purpose
Configure and open an NI-DNET Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOpenDnetExplMsg(NCTYPE_STRING IntfName,

NCTYPE_UINT32 DeviceMacId,

NCTYPE_OBJH_P ObjHandle);

Input
IntfName Name of DeviceNet interface

DeviceMacId MAC ID of the remote device

Output
ObjHandle Object handle you use with all subsequent function calls for

the Explicit Messaging Object

Function Description
ncOpenDnetExplMsg configures and opens an NI-DNET Explicit Messaging Object and
returns a handle that you use with all subsequent function calls for that object.

The Explicit Messaging Object represents an explicit messaging connection to a remote
DeviceNet device. Since only one explicit messaging connection is created for a given device,
the Explicit Messaging Object is also used for features which apply to the device as a whole.

Use the Explicit Messaging Object to do the following:

• Execute the DeviceNet Get Attribute Single service on the remote device
(ncGetDnetAttribute).

• Execute the DeviceNet Set Attribute Single service on the remote device
(ncSetDnetAttribute).

Chapter 2 NI-DNET Functions — ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

NI-DNET Programmer Reference Manual 2-50 ni.com

• Send any other explicit message request to the remote device and receive the associated
explicit message response (ncWriteDnetExplMsg, ncReadDnetExplMsg).

• Configure NI-DNET settings that apply to the entire remote device.

Parameter Descriptions
IntfName

DeviceMacId

ObjHandle

Description Name of the DeviceNet interface as an ASCII string with format
"DNETx", where x is a decimal number starting at zero that
indicates which DeviceNet interface is being used. You associate
DeviceNet interface names with physical ports using
Measurement & Automation Explorer (MAX).

Values "DNET0", "DNET1", …"DNET63"

In LabVIEW, the interface name is selected from an enumerated
list. The LabWindows/CVI function panel also provides an
enumerated list.

Description MAC ID (device address) of the remote DeviceNet device.

Many devices use physical switches to set their MAC ID. For such
devices, you can usually determine the device’s MAC ID by
examining those switches. MAC ID 63 is usually reserved for
new devices (many devices use 63 as the factory default).

If you do not know the MAC ID of your DeviceNet device,
NI-DNET provides a utility which can display the MAC ID for
you. This utility, SimpleWho, is described in the NI-DNET User
Manual.

Values 0 to 63

Description If the ncOpenDnetExplMsg function is successful, a handle to
the newly opened Explicit Messaging Object is returned in
ObjHandle. This handle is used with all subsequent function
calls for that Explicit Messaging Object.

The functions most commonly used with the Explicit Messaging
Object are ncGetDnetAttribute and ncSetDnetAttribute.

Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)

© National Instruments Corporation 2-51 NI-DNET Programmer Reference Manual

Examples
LabVIEW
Open an Explicit Messaging Object using interface "DNET2" and device MAC ID 15.

C
Open an Explicit Messaging Object using interface "DNET0" and device MAC ID 12.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
status = ncOpenDnetExplMsg("DNET0", 12, &objh);

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-52 ni.com

ncOpenDnetIntf (Open DeviceNet Interface)

Purpose
Configure and open an NI-DNET Interface Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOpenDnetIntf(NCTYPE_STRING IntfName,

NCTYPE_UINT32 IntfMacId,

NCTYPE_UINT32 BaudRate,

NCTYPE_UINT32 PollMode,

NCTYPE_OBJH_P ObjHandle);

Input
IntfName Name of DeviceNet interface

IntfMacId MAC ID of the DeviceNet interface

BaudRate Baud rate

PollMode Communication scheme for all polled I/O connections

Output
ObjHandle Object handle you use with all subsequent function calls for

the Interface Object

Function Description
ncOpenDnetIntf configures and opens an NI-DNET Interface Object and returns a handle
that you use with all subsequent function calls for that object.

The Interface Object represents a DeviceNet interface. Since this interface acts as a device on
the DeviceNet network much like any other device, it is configured with its own MAC ID and
baud rate.

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

© National Instruments Corporation 2-53 NI-DNET Programmer Reference Manual

Use the Interface Object to do the following:

• Configure NI-DNET settings which apply to the entire interface.

• Start and stop communication for all NI-DNET objects associated with the interface.

The Interface Object must be the first NI-DNET object opened by your application, and thus
ncOpenDnetIntf must be the first NI-DNET function called by your application.

Parameter Descriptions
IntfName

IntfMacId

Description Name of the DeviceNet interface as an ASCII string with format
“DNETx,” where x is a decimal number starting at zero that
indicates which DeviceNet interface is being used. You
associate DeviceNet interface names with physical ports
using Measurement & Automation Explorer (MAX).

Values "DNET0", "DNET1", …"DNET63"

In LabVIEW, the interface name is selected from an enumerated
list. The LabWindows/CVI function panel also provides an
enumerated list.

Description MAC ID (device address) of the DeviceNet interface. This is the
MAC ID used by your DeviceNet interface for communication
with other DeviceNet devices.

A device’s MAC ID indicates the priority of its DeviceNet
messages on the network, with lower numbered MAC IDs
having higher priority. If your DeviceNet interface is the only
master in the network (the usual case), this MAC ID is often
set to 0.

Values 0 to 63

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-54 ni.com

BaudRate

Description Baud rate used for communication on the network connected to
the DeviceNet interface. The DeviceNet protocol supports baud
rates of 125,000, 250,000, and 500,000 b/s.

Values 125000, 250000, or 500000

In LabVIEW, you select the baud rate from an enumerated
list. The LabWindows/CVI function panel also provides an
enumerated list.

PollMode

Description Determines the communication scheme used for all polled
I/O connections in which the interface acts as a master. The poll
mode determines the overall scheme used to transmit poll
requests to slave devices.

Automatic

The default poll mode is Automatic. Use this mode if you
do not want to specify exact timing for polled and strobed
I/O connections. In Automatic mode, the NI-DNET
software automatically calculates a safe rate for production
of all poll requests and strobe requests. This mode is similar
to Scanned mode, except that you do not need to specify a
valid ExpPacketRate for each polled/strobed I/O Object
(ExpPacketRate is ignored).

If you use Automatic, you cannot call the
ncOpenDnetIO function while communicating (after
ncOperateDnetIntf with Start), because the automatic
rate calculation occurs during Start. Use Scanned or
Individual if you need to open I/O connections while
communicating.

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

© National Instruments Corporation 2-55 NI-DNET Programmer Reference Manual

Description
(Continued)

Scanned

This mode enables the traditional scanned I/O scheme for
polled and strobed I/O connections. In Scanned mode,
all poll requests and strobe requests are produced in quick
succession, then NI-DNET waits to receive individual
responses. The benefits of scanned I/O are reduced
overhead and improved overall determinism on the
DeviceNet network.

When using Scanned mode, since all poll and strobe
requests are produced at the same time, you normally set the
ExpPacketRate for all polled and strobed I/O Objects to a
common value.

If you need to isolate devices that are slow to respond to poll
requests, it is possible to use different ExpPacketRate
values while still maintaining the benefits of scanned I/O.
You can set all ExpPacketRate values for polled I/O
Objects as two groups: one foreground group, and a second
background group whose ExpPacketRate is an exact
multiple of the foreground group’s. All strobed I/O must
use the same rate as the foreground group for polled I/O.
For example, you can set some polled I/O (and all
strobed I/O) to a common foreground rate of 100 ms,
and other polled I/O to a background rate of 500 ms.
To maintain overall network determinism, the background
poll requests are interspersed evenly among each
foreground scan.

PollMode (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-56 ni.com

ObjHandle

Description
(Continued)

Individual

This mode enables you to configure poll rates individually
for each polled I/O connection. In Individual mode, poll
requests are not produced as a group, but instead each
polled I/O connection communicates at an independent
rate. The rate at which each poll request is produced is
determined solely by the ExpPacketRate of that
connection’s I/O Object.

Use individual polling when you have detailed knowledge
of the time it takes each device to perform its physical
measurement or control function. For example, if you
have a discrete input device capable of acquiring a new
measurement every 10 ms, an analog input device with a
measurement rate of 45 ms, and a temperature sensor with
a measurement rate of 200 ms, you could use individual
polling to communicate with each device at its exact
measurement rate. Since communication occurs only at the
actual rate needed for each device, individual polling often
provides optimum network usage.

For additional information on PollMode and
ExpPacketRate, refer to the NI-DNET User Manual.

Values Automatic (constant NC_POLL_AUTO, value 0)

Scanned (constant NC_POLL_SCAN, value 1)

Individual (constant NC_POLL_INDIV, value 2)

In LabVIEW, you select the poll mode from an enumerated list.
The LabWindows/CVI function panel also provides an
enumerated list.

Description If the ncOpenDnetIntf function is successful, a handle to the
newly opened Interface Object is returned in ObjHandle. This
handle is used with all subsequent function calls for that
Interface Object.

The function most commonly used with the Interface Object is
ncOperateDnetIntf.

Values The encoding of ObjHandle is internal to NI-DNET.

PollMode (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIntf (Open DeviceNet Interface)

© National Instruments Corporation 2-57 NI-DNET Programmer Reference Manual

Examples
LabVIEW
Open Interface Object "DNET1" using baud rate 500000, MAC ID 3, and poll mode
Scanned.

C
Open Interface Object "DNET0" using baud rate 125000, MAC ID 0, and poll mode
Automatic.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
status = ncOpenDnetIntf("DNET0", 0, 125000, NC_POLL_AUTO, &objh);

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-58 ni.com

ncOpenDnetIO (Open DeviceNet I/O)

Purpose
Configure and open an NI-DNET I/O Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOpenDnetIO(NCTYPE_STRING IntfName,

NCTYPE_UINT32 DeviceMacId,
NCTYPE_UINT32 ConnectionType,
NCTYPE_UINT32 InputLength,
NCTYPE_UINT32 OutputLength,
NCTYPE_UINT32 ExpPacketRate,
NCTYPE_OBJH_P ObjHandle);

Input
IntfName Name of DeviceNet interface

DeviceMacId MAC ID of the remote device

ConnectionType Type of I/O connection

InputLength Number of input bytes

OutputLength Number of output bytes

ExpPacketRate Expected rate of I/O message (packet) production

Output
ObjHandle Object handle you use with all subsequent function calls for

the I/O Object

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-59 NI-DNET Programmer Reference Manual

Function Description
ncOpenDnetIO configures and opens an NI-DNET I/O Object and returns a handle that you
use with all subsequent function calls for that object.

The I/O Object represents an I/O connection to a remote DeviceNet device. The I/O Object
usually represents I/O communication as a master with a remote slave device. If your
computer is essentially being used as the primary controller of your DeviceNet devices, you
should configure I/O communication as a master.

You can also configure the I/O Object for I/O communication as a slave with a remote master.
If your computer is essentially being used as a peripheral device for another primary
controller, you can configure I/O communication as a slave. This is done by setting the
I/O Object’s DeviceMacId to the same MAC ID as the Interface Object (IntfMacId
parameter of ncOpenDnetIntf).

The I/O Object supports as many master/slave I/O connections as currently allowed by the
DeviceNet Specification (version 2.0). This means that you can use polled, strobed, and
COS/cyclic I/O connections simultaneously for a given device. As specified by the DeviceNet
Specification, you can only use one master/slave I/O connection of a given type for each
device (MAC ID). For example, you cannot open two polled I/O connections for the same
device.

Use the I/O Object to do the following:

• Read data from the most recent message received on the I/O connection
(ncReadDnetIO).

• Write data for the next message produced on the I/O connection (ncWriteDnetIO).

Parameter Descriptions
IntfName

Description Name of the DeviceNet interface as an ASCII string with format
"DNETx", where x is a decimal number starting at zero that indicates
which DeviceNet interface is being used. You associate DeviceNet
interface names with physical ports using Measurement & Automation
Explorer (MAX).

Values "DNET0", "DNET1", …"DNET63"

In LabVIEW, you select the interface name from an enumerated list.
The LabWindows/CVI function panel also provides an enumerated list.

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-60 ni.com

DeviceMacId

Description MAC ID (device address) of the remote DeviceNet device.

Many devices use physical switches to set their MAC ID. For such
devices, you can usually determine the device’s MAC ID by examining
those switches. MAC ID 63 is usually reserved for new devices (many
devices use 63 as the factory default).

If you do not know the MAC ID of your DeviceNet device, NI-DNET
provides a utility which can display the MAC ID for you. This utility,
SimpleWho, is described in the NI-DNET User Manual.

For I/O communication as a master to a remote slave device (the usual
case), DeviceMacId is the MAC ID of the remote DeviceNet slave
device, and thus must be different than the MAC ID of your DeviceNet
interface. If you want to configure I/O communication as a slave with
a remote master, set DeviceMacId to the same MAC ID as your
DeviceNet interface (the IntfMacId parameter of your previous call to
ncOpenDnetIntf). By associating the I/O Object with your DeviceNet
interface in this manner, you indicate that it represents
I/O communication as a slave.

Values 0 to 63

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-61 NI-DNET Programmer Reference Manual

ConnectionType

Description Type of master/slave I/O connection. The connection type is either
Polled, Strobed, change-of-state (COS), or Cyclic. As specified
by the DeviceNet Specification, you can use only one master/slave
I/O connection of a given type for each device (MAC ID). For example,
you cannot open two polled I/O connections for the same device.

If you do not know the I/O connection types supported by your
DeviceNet device, NI-DNET provides a utility which queries the device
for both this information and the device’s supported input and output
lengths. This utility, SimpleWho, is described in the NI-DNET User
Manual.

Change-of-state (COS) and cyclic I/O connections are acknowledged
by default. If you want to suppress acknowledgments for these
I/O connections, set the Ack Suppress driver attribute to true prior to
starting communication. For more information, refer to the description
of the I/O Object in Chapter 3, NI-DNET Objects.

Values Poll (constant NC_CONN_POLL, value 0)

Strobe (constant NC_CONN_STROBE, value 1)

COS (constant NC_CONN_COS, value 2)

Cyclic (constant NC_CONN_CYCLIC, value 3)

In LabVIEW, you select the connection type from an enumerated list.
The LabWindows/CVI function panel also provides an enumerated list.

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-62 ni.com

InputLength

Description Number of input bytes for the I/O connection. This is the number of
bytes read from the I/O connection using the ncReadDnetIO function.

The following information is specific to the ConnectionType setting.

Poll, COS, and Cyclic

For these I/O connection types, the input length is the same as the
number of bytes consumed from the remote device.

Strobe as master (DeviceMacId not equal to IntfMacId)

For this I/O connection, the input length is the same as the number
of bytes consumed from the strobe response message, and must
have a value from 0 to 8.

Strobe as slave (DeviceMacId equal to IntfMacId)

For this I/O connection, the input length must have a value of 1.
The input data consists of a single Boolean value (bit) obtained
from the master’s strobe command message using IntfMacId.
This Boolean value is returned from the ncReadDnetIO function
as a single byte.

Values Poll, COS, and Cyclic: 0 to 255

Strobe as master (DeviceMacId not equal to IntfMacId): 0 to 8

Strobe as slave (DeviceMacId equal to IntfMacId): 1

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-63 NI-DNET Programmer Reference Manual

OutputLength

Description Number of output bytes for the I/O connection. This is the number of
bytes written to the I/O connection using the ncWriteDnetIO function.

The following information is specific to the ConnectionType setting.

Poll, COS, and Cyclic

For these I/O connections types, the output length is the same as the
number of bytes produced to the remote device.

Strobe as master (DeviceMacId not equal to IntfMacId)

For this I/O connection, the output length must have a value of 1.
The output data consists of a single Boolean value (bit) which is
placed into the strobe command message using DeviceMacId.
This Boolean value is provided to the ncWriteDnetIO function
as a single byte.

Strobe as slave (DeviceMacId equal to IntfMacId)

For this I/O connection, the output length must have a value from
0 to 8. The output length is the same as the number of bytes
produced in the strobe response message.

Values Poll, COS, and Cyclic: 0 to 255

Strobe as master (DeviceMacId not equal to IntfMacId): 1

Strobe as slave (DeviceMacId equal to IntfMacId): 0 to 8

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-64 ni.com

ExpPacketRate

Description Expected rate of I/O message (packet) production in milliseconds.

As specified in the DeviceNet Specification, the expected packet rate is
used to trigger data productions. The expected packet rate is also used
for the watchdog timer to verify that the device on the other side of the
I/O connection still exists and is producing data as expected. The
expected packet rate of each I/O connection is a major factor in
determining the overall performance of your DeviceNet network.

The following information is specific to the ConnectionType setting
and the PollMode setting of your Interface Object.

Strobe with Automatic poll mode

When using the Automatic poll mode, the ExpPacketRate
setting is ignored for strobed I/O Objects. The rate of production for
the strobe command message is determined automatically by
NI-DNET.

Strobe with Scanned or Individual poll mode

When using the Scanned or Individual poll mode, you must set
the ExpPacketRate to the same value for all strobed I/O Objects.
Since a single strobe command message is produced for all strobed
I/O connections, the rate of production for that message must be
identical for all strobed I/O Objects.

Poll with Automatic poll mode

When using the Automatic poll mode, the ExpPacketRate
setting is ignored for polled I/O Objects. NI-DNET automatically
determines the rate of production for the poll command messages.

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-65 NI-DNET Programmer Reference Manual

Description
(Continued)

Poll with Scanned poll mode

When using the Scanned poll mode, since all poll and strobe
requests are produced at the same time, you normally set the
ExpPacketRate for all polled/strobed I/O Objects to a common
value.

If you need to isolate devices that are slow to respond to poll
requests, it is possible to use different ExpPacketRate values
while still maintaining the benefits of scanned I/O. You can set
all ExpPacketRate values for polled I/O Objects as two groups,
one foreground group, and a second background group whose
ExpPacketRate is an exact multiple of the foreground group’s.
All strobed I/O must use the same rate as the foreground group
for polled I/O. For example, you can set some polled I/O (and all
strobed I/O) to a common foreground rate of 100 ms, and other
polled I/O to a background rate of 500 ms. To maintain overall
network determinism, the background poll requests are interspersed
evenly among each foreground scan.

Poll with Individual poll mode

When using the Individual poll mode, the ExpPacketRate
determines the rate at which the poll request of each polled I/O
Object is produced. Although all strobed I/O Objects must still use
the same rate, each polled I/O Object communicates at a rate which
is independent of all other I/O connections.

Change-of-state (COS) with any poll mode

For COS I/O Objects, the ExpPacketRate is used solely to verify
that the I/O connection still exists. If no change in data produces
I/O message within the expected packet rate, the previous data is
produced again to maintain the I/O connection. Since this rate is
used solely to maintain the I/O connection, it is often set to a large
value, such as 10000 (10 seconds).

In addition to the expected packet rate, COS I/O connections also
produce an I/O message when a change is detected in the data.
These I/O change messages do not occur at a predetermined rate.
The time between each I/O change message depends on when an
actual change takes place and how fast the device can measure new
data and detect changes.

ExpPacketRate (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-66 ni.com

ObjHandle

Examples
LabVIEW
Open an I/O Object using interface "DNET2", device MAC ID 15, connection type Poll,
input length 14, output length 6, and expected packet rate 40 ms.

Description
(Continued)

Cyclic with any poll mode

For cyclic I/O Objects, the ExpPacketRate determines the rate
at which the I/O message is produced. Each cyclic I/O Object
communicates at a rate which is independent of all other I/O
connections.

Note regarding I/O as a slave (DeviceMacId equal to IntfMacId)

The ExpPacketRate setting applies only to I/O Objects used for
communication as a master (the usual case). For I/O Objects used
for communication as a slave, this setting is ignored because the
remote master determines the expected packet rate on behalf of your
slave I/O connection.

Values 1 to 60000

Description If the ncOpenDnetIO function is successful, a handle to the newly
opened I/O Object is returned in ObjHandle. This handle is used with
all subsequent function calls for that I/O Object.

The functions most commonly used with the I/O Object are
ncReadDnetIO and ncWriteDnetIO.

Values The encoding of ObjHandle is internal to NI-DNET.

ExpPacketRate (Continued)

Chapter 2 NI-DNET Functions — ncOpenDnetIO (Open DeviceNet I/O)

© National Instruments Corporation 2-67 NI-DNET Programmer Reference Manual

C
Open an I/O Object using interface "DNET0", device MAC ID 12, connection type Strobe,
input length 2, output length 1, and expected packet rate 100 ms.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
status = ncOpenDnetIO("DNET0", 12, ,NC_CONN_STROBE, 2, 1, 100, &objh);

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-68 ni.com

ncOperateDnetIntf (Operate DeviceNet Interface)

Purpose
Perform an operation on an NI-DNET Interface Object.

Format
LabVIEW

C
NCTYPE_STATUS ncOperateDnetIntf (NCTYPE_OBJH ObjHandle,

 NCTYPE_UINT32 Opcode,
 NCTYPE_UINT32 Param);

Input
ObjHandle Object handle of an open Interface Object

Opcode Operation code indicating which operation to perform

Param Parameter whose meaning is defined by Opcode

Output
None

Function Description
ncOperateDnetIntf operates on an NI-DNET Interface Object.

Use ncOperateDnetIntf to start and stop all DeviceNet communication for the associated
interface, including all explicit messaging and I/O connections. After you open the Explicit
Messaging Objects and I/O Objects required by your application, you must use
ncOperateDnetIntf to start communication. You must also use ncOperateDnetIntf
to stop communication before terminating your application.

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

© National Instruments Corporation 2-69 NI-DNET Programmer Reference Manual

 Parameter Descriptions
ObjHandle

Description ObjHandle must contain an object handle returned from the
ncOpenDnetIntf function.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the Interface Object.

Values The encoding of ObjHandle is internal to NI-DNET.

Opcode

Description Determines which operation to perform on the Interface Object.

Start

Start all DeviceNet communication for the associated interface.
For each Explicit Messaging Object and I/O Object which has
been opened for the interface (same IntfName), this operation
establishes the DeviceNet connection with the remote device. When
the operation establishes I/O connections, it places outputs into
active mode (data is produced on the network). If the default output
data (all bytes zero) is not valid for your application, use
ncWriteDnetIO for each I/O Object to initialize valid output data
prior to starting communication. If the interface has already been
started, this operation has no effect.

Stop

Stop all DeviceNet communication for the associated interface.
For each Explicit Messaging Object and I/O Object which has been
opened for the interface, this operation closes the DeviceNet
connection with the remote device. Although closing all NI-DNET
objects implicitly stops communication, you should perform this
operation prior to calling ncCloseObject. If the interface has
already been stopped, this operation has no effect.

Active

Place the outputs of all I/O connections into active mode. When an
I/O connection is in active mode, it produces data in its outgoing
I/O message. This operation is used after a previous Idle to restore
normal communication on all I/O Objects associated with the
interface. If the interface has already been placed into active mode
or is stopped, this operation has no effect.

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

NI-DNET Programmer Reference Manual 2-70 ni.com

Param

Description
(Continued)

Idle

Place the outputs of all I/O connections into the idle mode. When
an I/O connection is in the idle mode, it does not produce data in its
outgoing I/O message, but the I/O connection is kept open by
producing an I/O message with zero data bytes. Use this operation
when valid output data is no longer available from your application,
such as when a control algorithm has been paused. If the interface
has already been placed into idle mode or is stopped, this operation
has no effect.

Note: The DeviceNet Specification does not clearly define the
behavior of a slave device on reception of an idle (zero length) I/O
message. Many slave devices exhibit unexpected behavior when the
Idle operation is used. If you need to suspend your application, but
want to keep I/O connections open, you should provide valid idle
values for outputs using ncWriteDnetIO rather than use the Idle
operation.

Values Start (constant NC_OP_START, value 1)

Stop (constant NC_OP_STOP, value 2)

Active (constant NC_OP_ACTIVE, value 4)

Idle (constant NC_OP_IDLE, value 5)

In LabVIEW, you select the operation code from an enumerated list.
The LabWindows/CVI function panel also provides an enumerated list.

Description The meaning of Param is defined by each operation code (Opcode).
Since none of the operations currently use this additional parameter, it is
ignored and you should normally set it to zero. In the future, if new
operations require some form of qualifying information, this parameter
might be used.

Values 0

Opcode (Continued)

Chapter 2 NI-DNET Functions — ncOperateDnetIntf (Operate DeviceNet Interface)

© National Instruments Corporation 2-71 NI-DNET Programmer Reference Manual

Examples
LabVIEW
Start communication using an Interface Object.

C
Stop communication for the Interface Object referenced by objh.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
status = ncOperateDnetIntf(objh, NC_OP_STOP, 0);

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-72 ni.com

ncReadDnetExplMsg (Read DeviceNet Explicit Message)

Purpose
Read an explicit message response from an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncReadDnetExplMsg(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT8_P ServiceCode,
NCTYPE_UINT16 SizeofServData,
NCTYPE_ANY_P ServData,
NCTYPE_UINT16_P ActualServ

DataLength);

Input
ObjHandle Object handle of an open Explicit Messaging Object

SizeofServData Size of ServData buffer in bytes (C only)

Output
ServiceCode DeviceNet service code from response

ServData Service data from response

ActualServDataLength Actual number of service data bytes in response

Function Description
ncReadDnetExplMsg reads an explicit message response from an Explicit Messaging
Object.

The two most commonly used DeviceNet explicit messages are the Get Attribute Single
service and the Set Attribute Single service. The easiest way to execute the Get Attribute
Single service on a remote device is to use the NI-DNET ncGetDnetAttribute function.

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

© National Instruments Corporation 2-73 NI-DNET Programmer Reference Manual

The easiest way to execute the Set Attribute Single service on a remote device is to use the
NI-DNET ncSetDnetAttribute function.

To execute services other than Get Attribute Single and Set Attribute Single, use the
following sequence of function calls: ncWriteDnetExplMsg, ncWaitForState,
ncReadDnetExplMsg. The ncWriteDnetExplMsg function sends an explicit message
request to a remote DeviceNet device. The ncWaitForState function waits for the explicit
message response, and the ncReadDnetExplMsg function reads that response.

Some of the DeviceNet services which use ncReadDnetExplMsg are Reset, Save, Restore,
Get Attributes All, and Set Attributes All. Although the DeviceNet Specification defines the
overall format of these services, in most cases their meaning and service data are
object-specific or vendor-specific. Unless your device requires such services and documents
them in detail, you probably do not need them for your application. For more information,
refer to the NI-DNET User Manual.

Parameter Descriptions
ObjHandle

Description ObjHandle must contain an object handle returned from
ncOpenDnetExplMsg.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-74 ni.com

ServiceCode

SizeofServData

Description Identifies the service response as either success or error. If the response
is success, this value is the same as the ServiceCode of the request
(ncWriteDnetExplMsg), and the ServData bytes are formatted as
defined by the service. If the response is error, this value is 14 hex,
ServData[0] contains a General Error Code, and ServData[1]
contains an Additional Code. Either the DeviceNet Specification
or the object itself define the error codes.

Although the DeviceNet Specification requires the high bit of the service
code (hex 80) to be set in all explicit message responses, NI-DNET
clears this response indicator so that you can compare the actual service
code to the value used with ncWriteDnetExplMsg.

Values Same as the ServiceCode of ncWriteDnetExplMsg (success
response)
or
14 hex (error response)

Description For C, this is the size of the buffer referenced by ServData. Use it to
verify that you have enough bytes available to store the service data from
the response. This size is normally obtained using the C language
sizeof function and has no direct relation to the number of bytes
received on the network.

For LabVIEW, since the buffer for ServData is allocated automatically
by NI-DNET, this size is not needed.

The number of bytes allocated for ServData should be large enough to
hold the maximum number of service data response bytes defined for the
service.

 Values sizeof (buffer referenced by ServData)

Chapter 2 NI-DNET Functions — ncReadDnetExplMsg (Read DeviceNet Explicit Message)

© National Instruments Corporation 2-75 NI-DNET Programmer Reference Manual

ServData

ActualServDataLength

Examples
LabVIEW
Read an explicit message response from an Explicit Messaging Object.

C
Read an explicit message response from the Explicit Messaging Object referenced by objh.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_UINT8 servcode;
NCTYPE_UINT8 servdata[20];
NCTYPE_UINT16 actual_len;
status = ncReadDnetExplMsg(objh, &servcode, 20, servdata,

&actual_len);

Description Service data bytes from response. If the response is success, these bytes
are formatted as defined by the service. If the response is error, the first
byte (ServData[0]) contains a General Error Code, and the second
byte (ServData[1]) contains an Additional Code. Either the
DeviceNet Specification or the object itself define the error codes.

The number of service data bytes returned is the smaller of
SizeofServData and ActualServDataLength.

Values Service data bytes from response

Description Actual number of service data bytes in response. This length is obtained
from the actual response message. If this length is greater than
SizeofServData, only SizeofServData bytes are returned in
ServData. If this length is less than or equal to SizeofServData,
ActualServDataLength bytes are valid in ServData.

Values 0 to 240

Chapter 2 NI-DNET Functions — ncReadDnetIO (Read DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-76 ni.com

ncReadDnetIO (Read DeviceNet I/O)

Purpose
Read input data from an I/O Object.

Format
LabVIEW

C
NCTYPE_STATUS ncReadDnetIO(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 SizeofData,
NCTYPE_ANY_P Data);

Input
ObjHandle Object handle of an open I/O Object

SizeofData Size of Data buffer in bytes (C only)

Output
Data Input data

Function Description
ncReadDnetIO reads input data from an NI-DNET I/O Object.

Since each I/O Object continuously acquires input data from the DeviceNet network, you
normally wait for new input to become available prior to calling ncReadDnetIO. By waiting
for new input data, your application can handle I/O data at the same rate as the DeviceNet
I/O communication. You can use the function ncCreateNotification (C only),
ncCreateOccurrence (LabVIEW only), or ncWaitForState (C or LabVIEW) to
wait for new input data.

ncReadDnetIO normally returns input data bytes obtained from the input assembly of a
remote DeviceNet slave device. The format of this input assembly is normally documented
either by the device vendor or within the DeviceNet Specification itself.

Chapter 2 NI-DNET Functions — ncReadDnetIO (Read DeviceNet I/O)

© National Instruments Corporation 2-77 NI-DNET Programmer Reference Manual

The bytes of a device’s input assembly often consist of multiple data members rather than a
single value. For C, you can often obtain each data member from the input bytes by using
typecasting. For LabVIEW, you can often obtain each data member from the input bytes using
the ncConvertFromDnetRead function. For more information on input assemblies and how
to obtain individual data members, refer to the NI-DNET User Manual.

Parameter Descriptions
ObjHandle

SizeofData

Data

Description ObjHandle must contain an object handle returned from
ncOpenDnetIO.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description For C, SizeofData is the size of the buffer referenced by Data. Use it
to verify that you have enough bytes available to store the input bytes.
This size is normally obtained using the C language sizeof function
and has no direct relation to the number of bytes received on the
network.

For LabVIEW, since the buffer for Data is allocated automatically by
NI-DNET, this size is not needed.

The actual number of bytes received on the I/O connection is determined
by the InputLength parameter of ncOpenDnetIO and not this size.

Values sizeof (buffer referenced by Data)

Description Input data. The format of these input bytes is specific to your DeviceNet
device.

Values Input data bytes

Chapter 2 NI-DNET Functions — ncReadDnetIO (Read DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-78 ni.com

Examples
LabVIEW
Read 20 input bytes from an I/O Object.

C
Read 10 input bytes from the I/O Object referenced by objh.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_UINT8 input[10];
status = ncReadDnetIO(objh, 10, input);

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

© National Instruments Corporation 2-79 NI-DNET Programmer Reference Manual

ncSetDnetAttribute (Set DeviceNet Attribute)

Purpose
Set an attribute value for a DeviceNet device using an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncSetDnetAttribute(

NCTYPE_OBJH ObjHandle,
NCTYPE_UINT16 ClassId,
NCTYPE_UINT16 InstanceId,
NCTYPE_UINT8 AttributeId,
NCTYPE_DURATION Timeout,
NCTYPE_UINT16 AttrDataLength,
NCTYPE_ANY_P AttrData
NCTYPE_UINT16_P DeviceError);

Input
ObjHandle Object handle of an open Explicit Messaging Object

ClassId Identifies the class which contains the attribute

InstanceId Identifies the instance which contains the attribute

AttributeId Identifies the attribute to set

Timeout Maximum time to wait for response from device

AttrDataLength Number of attribute data bytes to set

AttrData Attribute value to set in device

Output
DeviceError Error codes from device’s error response

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-80 ni.com

Function Description
ncSetDnetAttribute sets the value of an attribute for a DeviceNet device using an Explicit
Messaging Object.

ncSetDnetAttribute executes the Set Attribute Single service on a remote DeviceNet
device.

The DeviceNet data type in the attribute’s description defines the format of the data provided
in AttrData. When using LabVIEW, the ncConvertForDnetWrite function can convert
this DeviceNet data type from an appropriate LabVIEW data type. When using C, AttrData
can point to a variable of the appropriate data type as specified in Chapter 1, NI-DNET Data
Types.

Parameter Descriptions
ObjHandle

ClassId

Description ObjHandle must contain an object handle returned from the
ncOpenDnetExplMsg function.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifies the class which contains the attribute. You can find
descriptions and identifiers for each standard DeviceNet class in the
DeviceNet Specification (Volume 2, Chapter 6, The DeviceNet Object
Library). The device vendor documents vendor-specific classes.
Although the DeviceNet Specification allows 16-bit class IDs, most
class IDs are 8-bit. NI-DNET automatically used the class ID size
(16-bit or 8-bit) that is appropriate for your device.

Values 00 to FFFF hex

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

© National Instruments Corporation 2-81 NI-DNET Programmer Reference Manual

InstanceId

AttributeId

Timeout

AttrDataLength

Description Identifies the instance which contains the attribute. Instance ID 0 sets an
attribute in the class itself. Other instance IDs typically are numbered
starting at 1. For example, the primary Identity Object in a device uses
instance ID 1. Although the DeviceNet Specification allows 16-bit
instance IDs, most instance IDs are 8-bit. NI-DNET automatically uses
the instance ID size (16-bit or 8-bit) that is appropriate for your device.

Values 00 to FFFF hex

Description Identifies the attribute to set. The class and instance descriptions list
attribute IDs. The attribute’s description also lists the DeviceNet data
type for the attribute’s value.

Values 00 to FF hex

Description Maximum time to wait for response from device. To set the attribute
in the device, an explicit message request for the Set Attribute Single
service is sent to the device. After sending the service request, this
function must wait for the explicit message response for Set Attribute
Single. Timeout specifies the maximum number of milliseconds to wait
for the response before giving up. If the timeout expires before the
response is received, this function returns a status of BFF62001 hex
(CanErrFunctionTimeout).

For most DeviceNet devices, a Timeout of 100 ms is appropriate.

The special timeout value of FFFFFFFF hex is used to wait indefinitely.

Values 1 to 1000
or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Description Number of attribute data bytes to set. This length also specifies the
number of bytes provided in AttrData.

Values 0 to 239

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

NI-DNET Programmer Reference Manual 2-82 ni.com

AttrData

DeviceError

Description Attribute value to set in device.

The DeviceNet data type in the attribute’s description defines the
format of the data provided in AttrData. When using LabVIEW,
the ncConvertForDnetWrite function can convert this DeviceNet
data type from an appropriate LabVIEW data type. When using C,
AttrData can point to a variable of the appropriate data type as
specified in Chapter 1, NI-DNET Data Types.

The AttrDataLength parameter specifies the number of attribute data
bytes to set.

Values Attribute value to set in device.

Description Error codes from device’s error response.

If the remote device responds successfully to the Set Attribute Single
service, the return status is 0 (DnetSuccess), and DeviceError
returns 0.

If the remote device returns an error response for the Set Attribute Single
service, the return status is BFF62014 hex (DnetErrErrorResponse),
and DeviceError returns the error codes from the response.

The General Error Code from the device’s error response is returned in
the low byte of DeviceError. Common values for General Error Code
include Attribute Not Supported (14 hex), Object Does Not Exist
(16 hex), and Invalid Attribute Value (09 hex).

The Additional Code from the device’s error response is returned in the
high byte of DeviceError. The Additional Code provides additional
information that further describes the error. If no additional information
is needed, the value FF hex is placed into this field.

The DeviceNet Specification documents values for the General Error
Code and Additional Code. You can find common error code values in
Appendix H, DeviceNet Error Codes, in the DeviceNet Specification.
The object description lists object-specific error codes. Your device’s
documentation lists vendor-specific error codes.

Values Error codes from the device’s error response.

Chapter 2 NI-DNET Functions — ncSetDnetAttribute (Set DeviceNet Attribute)

© National Instruments Corporation 2-83 NI-DNET Programmer Reference Manual

Examples
LabVIEW
Set the Input Range attribute of an Analog Input Object. The Input Range is contained in
instance 3 of an Analog Input Object (class ID 0A hex, instance ID 3, attribute ID 7). The
DeviceNet data type for Input Range is USINT, for which the LabVIEW data type U8 should
be used. The Timeout is 40 ms.

C
Set the MAC ID attribute of a remote DeviceNet device using the Explicit Messaging Object
referenced by objh. The MAC ID is contained in the DeviceNet Object (class ID 3, instance
ID 1, attribute ID 1). The DeviceNet data type for Device Type is USINT, for which the
NI-DNET data type NCTYPE_UINT8 should be used.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_UINT8 mac_id;
NCTYPE_UINT16 device_error;
mac_id = 12;
status = ncSetDnetAttribute(objh, 0x03, 0x01, 0x01, 100, 1, &mac_id,

&device_error);

Chapter 2 NI-DNET Functions — ncSetDriverAttr (Set Driver Attribute)

NI-DNET Programmer Reference Manual 2-84 ni.com

ncSetDriverAttr (Set Driver Attribute)

Purpose
Set the value of an attribute in the NI-DNET driver.

Format
LabVIEW

C
NCTYPE_STATUS ncSetDriverAttr (NCTYPE_OBJH ObjHandle,

NCTYPE_ATTRID AttrId,

NCTYPE_UINT32 SizeofAttr,

NCTYPE_ANY_P Attr)

Input
ObjHandle Object handle of an open Explicit Messaging Object,

I/O Object, or Interface Object

AttrId Identifier of the attribute to set

SizeofAttr Size of the Attr buffer in bytes (C only)

Attr New attribute value

Output
None

Function Description
ncSetDriverAttr sets the value of an attribute in the NI-DNET driver software. NI-DNET
objects use attributes to represent configuration settings, status, and other information.

Since you only need to access NI-DNET driver attributes under special circumstances,
you seldom need to use ncSetDriverAttr. For information about the attributes of each
NI-DNET object, refer to Chapter 3, NI-DNET Objects.

Chapter 2 NI-DNET Functions — ncSetDriverAttr (Set Driver Attribute)

© National Instruments Corporation 2-85 NI-DNET Programmer Reference Manual

ncSetDriverAttr only applies to the NI-DNET software on your computer and cannot be
used to set an attribute in a remote DeviceNet device. To set an attribute in a remote DeviceNet
device, use ncSetDnetAttribute.

 Parameter Descriptions
ObjHandle

AttrId

SizeofAttr

Attr

Description ObjHandle must contain an object handle returned from
ncOpenDnetExplMsg, ncOpenDnetIntf, or ncOpenDnetIO.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifier of the NI-DNET attribute. For each NI-DNET object, a list
of supported attribute identifiers is provided in Chapter 3, NI-DNET
Objects.

Values 80000000 to 8000FFFF hex (high bit differentiates from
DeviceNet IDs)

Description For C, SizeofAttr is the size of the buffer referenced by Attr. It is
used to verify that the Attr buffer is large enough to hold the attribute’s
new value. This size is normally obtained using the C language sizeof
function.

For LabVIEW, since Attr is obtained directly as an input, this size is
not needed.

Values sizeof (buffer referenced by Attr)

Description New attribute value. The value is usually provided in an unsigned 32-bit
integer (and thus Attr is of type NCTYPE_UINT32_P).

Values New value of NI-DNET attribute

Chapter 2 NI-DNET Functions — ncSetDriverAttr (Set Driver Attribute)

NI-DNET Programmer Reference Manual 2-86 ni.com

Examples
LabVIEW
Verify vendor ID 20 for the DeviceNet device referenced by an Explicit Messaging Object.

C
Suppress acknowledgments for the COS I/O Object referenced by objh.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_BOOL ack_sup;
ack_sup = NC_TRUE;
status = ncSetDriverAttr(objh, NC_ATTR_ACK_SUPPRESS, sizeof(ack_sup),

&ack_sup);

Chapter 2 NI-DNET Functions — ncStatusToString (Status To String)

© National Instruments Corporation 2-87 NI-DNET Programmer Reference Manual

ncStatusToString (Status To String)

Purpose
Convert status returned from an NI-DNET function into a descriptive string.

Format
LabVIEW
Not applicable

For LabVIEW, NI-DNET functions use the standard error in and error out clusters for status
information. You can view error descriptions using built-in LabVIEW features such as
Explain Error in the Help menu, or the Simple Error Handler VI in your diagram.

C
void ncStatustoString(

NCTYPE_STATUS Status,
NCTYPE_UINT32 SizeofString,
NCTYPE_STRING String);

Input
Status Status returned from a previous function call

SizeofString Size of String buffer in bytes

Output
String Textual string which describes the function status

Function Description
For applications written in C, C++, or Visual Basic, each NI-DNET function returns a status
code as a signed 32-bit integer. Table 2-2 summarizes the NI-DNET use of this status:

Table 2-2. NI-DNET Status Codes

Status Code Meaning

Negative Error—Function did not perform expected behavior.

Positive Warning—Function performed as expected, but a condition arose that
may require your attention.

Zero Success—Function completed successfully.

Chapter 2 NI-DNET Functions — ncStatusToString (Status To String)

NI-DNET Programmer Reference Manual 2-88 ni.com

ncStatusToString converts a status value returned from an NI-DNET function into
a descriptive string. By displaying this string when an error or warning is detected,
you can avoid interpretation of the numeric code to debug the problem.

The ncStatustoString function is not applicable to LabVIEW programming. For
LabVIEW, NI-DNET functions use the standard error in and error out clusters for status
information. You can view error descriptions using built-in LabVIEW features such as
Explain Error in the Help menu, or the Simple Error Handler VI in your diagram.

If you want to avoid displaying error messages while debugging your application, you
can use the Explain.exe utility. This console application is in the Utilities subfolder
of the NI-DNET installation folder, which is typically \Program Files\National
Instruments\NI-DNET\Utilities. You enter an NI-DNET status code in the command
line (such as Explain 0xBFF62001), and the utility displays the description.

Your application code should check the status returned from every NI-DNET function.
If an error is detected, you should close all NI-DNET handles, then exit the application.
If a warning is detected, you can display a message for debugging purposes, or simply ignore
the warning.

Parameter Descriptions
Status

SizeofString

Description Status must contain a status value returned from a previous call to an
NI-DNET function. You normally call ncStatustoString only when
the status is nonzero, indicating an error or warning condition.

Values Value of data type NCTYPE_STATUS, returned from an NI-DNET
function call

Description SizeofString is the size of the buffer referenced by String. The
ncStatustoString function copies at most SizeofString bytes
into the string and cuts off the text as needed. You can normally obtain
this size using the C language sizeof function.

Although you can often obtain an adequate description with fewer bytes,
a 512-byte buffer is large enough to hold any NI-DNET status
description.

Values sizeof (buffer referenced by String)

Chapter 2 NI-DNET Functions — ncStatusToString (Status To String)

© National Instruments Corporation 2-89 NI-DNET Programmer Reference Manual

String

Example
C
Check the status returned from the ncOpenDnetIntf function, and if not success, print a
descriptive string.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
char descr[80];
status = ncOpenDnetIntf("DNET0", 0, 125000, NC_POLL_AUTO,

&objh);
if (status != DnetSuccess) {

ncStatustoString(status, sizeof(descr),
descr);
printf("ncOpenDnetIntf: %s\n", descr);

}

Description Textual string which describes the function status. The string is NULL
terminated like any other C language string. The number of bytes
returned is the smaller of SizeofString and the number of bytes
contained in the actual description.

Values Textual string which describes the function status

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

NI-DNET Programmer Reference Manual 2-90 ni.com

ncWaitForState (Wait For State)

Purpose
Wait for one or more states to occur in an object.

Format
LabVIEW

C
NCTYPE_STATUS ncWaitForState(

NCTYPE_OBJH ObjHandle,

NCTYPE_STATE DesiredState,

NCTYPE_DURATION Timeout,

NCTYPE_STATE_P CurrentState)

Input
ObjHandle Object handle of an open Explicit Messaging Object or an I/O

Object

DesiredState States to wait for

Timeout Number of milliseconds to wait for one of the desired states

Output
CurrentState Current state of object

Function Description
Use ncWaitforState to wait for one or more states to occur in the object specified by
ObjHandle.

ncWaitforState is commonly used to wait for the Established state of an Explicit
Messaging Object, or else to wait for an explicit message response resulting from a call to
ncWriteDnetExplMsg, then read that response using ncReadDnetExplMsg.

While waiting for the desired states, ncWaitForState suspends the current execution.
For C, this could suspend your front panel user interface. For LabVIEW, you can still access
your front panel and functions that are not directly connected to ncWaitForState can still

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

© National Instruments Corporation 2-91 NI-DNET Programmer Reference Manual

execute. If you want to allow other code in your application to execute while waiting
for NI-DNET states, refer to the ncCreateNotification (C only) and
ncCreateOccurrence (LabVIEW only) functions.

The functions ncWaitForState, ncCreateNotification, and ncCreateOccurrence
all use the same underlying implementation. Therefore, for each object handle, only one of
these functions can be pending at a time. For example, you cannot invoke ncWaitForState
twice from different threads for the same object. For different object handles, these functions
can overlap in execution.

The status returned from ncWaitForState indicates any error detected by NI-DNET. You
should always check this return status prior to checking the CurrentState value returned
from ncWaitForState.

Parameter Descriptions
ObjHandle

Description ObjHandle must contain an object handle returned from
ncOpenDnetExplMsg or ncOpenDnetIO.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

DesiredState

Description States to wait for. Each state is represented by a single bit so that you can
wait for multiple states simultaneously. For example, if NI-DNET
provides states with values of hex 1 and hex 4, DesiredState of hex 5
waits for either state to occur.

ReadAvail for the I/O Object

For the I/O Object, the ReadAvail state is set when a new input
message is received from the network. The ReadAvail state clears
when you call ncReadDnetIO. For example, for a change-of-state
(COS) I/O connection, the ReadAvail state sets when a COS input
message is received.

Although you can use ncWaitForState with an I/O Object, it is
often preferable to use a notification (ncCreateNotification
or ncCreateOccurrence). Use of a notification callback or
occurrence for the ReadAvail state allows your application to
handle multiple I/O connections independently.

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

NI-DNET Programmer Reference Manual 2-92 ni.com

Description
(Continued)

ReadAvail for the Explicit Messaging Object

For the Explicit Messaging Object, the ReadAvail state sets when
an explicit message response is received from the network. The
ReadAvail state clears when you call ncReadDnetExplMsg.
An explicit message response is received only after you send
an explicit message request using ncWriteDnetExplMsg. The
following sequence of calls is typical: ncWriteDnetExplMsg,
ncWaitForState, ncReadDnetExplMsg. This sequence is used
internally by ncGetDnetAttribute and ncSetDnetAttribute.

The ReadAvail state is not needed when using the
explicit messaging functions ncGetDnetAttribute and
ncSetDnetAttribute because both of these functions wait
for the explicit message response internally.

Established for the Explicit Messaging Object

For the Explicit Messaging Object, the Established state is
clear (not established) before you start communication using
ncOperateDnetIntf. After you start communication, the
Established state remains clear until the explicit message
connection has been successfully established with the remote
DeviceNet device. After the explicit message connection has been
established, the Established state sets and remains set for as long
as the explicit message connection is open.

Until the Established state sets for the Explicit
Messaging Object, all calls to ncGetDnetAttribute,
ncSetDnetAttribute, or ncWriteDnetExplMsg return the
error CanErrNotStarted. Before you call any of these functions
in your application, you must first wait for the Established state
to set.

After the Established state is set, unless communication
problems occur with the device (CanErrFunctionTimeout),
it remains set until you stop communication using
ncOperateDnetIntf.

While waiting for one of the above states, if an error occurs (such as
a communication error or an initialization error), the wait returns
immediately with the appropriate error code. For example, if you
call ncWaitforState with DesiredState of ReadAvail, the
wait function will return when data is available for a read, or when
a DeviceNet communication error (such as connection timeout) is
detected.

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

© National Instruments Corporation 2-93 NI-DNET Programmer Reference Manual

Timeout

CurrentState

Values A combination of one or more of the following bit values.

1 hex (ReadAvail, constant NC_ST_READ_AVAIL)

8 hex (Established, constant NC_ST_ESTABLISHED)

In LabVIEW and the LabWindows/CVI function panel, to facilitate
combining multiple states, you can select a valid combination from an
enumerated list of all valid combinations. This list contains the names of
each state in the combination, such as ReadAvail or Established.

Description Number of milliseconds to wait for one of the desired states.
If the timeout expires before one of the desired states occurs,
ncWaitForState returns a status of BFF62001 hex
(CanErrFunctionTimeout).

The special timeout value of FFFFFFFF hex is used to wait indefinitely.

Values 1 to 200000
or
FFFFFFFF hex (infinite duration, constant NC_DURATION_INFINITE)

Description Current state of the object. If one of the desired states occurs, it provides
the current value of the ReadAvail and Established states. If the
Timeout expires before one of the desired states occurs, it has the
value 0.

Values 0 (desired states did not occur)

or

A combination of one or more of the following bit values.

1 hex (ReadAvail, constant NC_ST_READ_AVAIL)
8 hex (Established, constant NC_ST_ESTABLISHED)

DesiredState (Continued)

Chapter 2 NI-DNET Functions — ncWaitForState (Wait For State)

NI-DNET Programmer Reference Manual 2-94 ni.com

Examples
LabVIEW
Wait up to 10 seconds for the ReadAvail state of an Explicit Messaging Object.

C
Wait up to 10 seconds for the ReadAvail state of the Explicit Messaging Object referenced
by objh.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_STATE currstate;
status = ncWaitForState(objh, NC_ST_READ_AVAIL, 10000, &currstate);

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

© National Instruments Corporation 2-95 NI-DNET Programmer Reference Manual

ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

Purpose
Write an explicit message request using an Explicit Messaging Object.

Format
LabVIEW

C
NCTYPE_STATUS ncWriteDnetExplMsg(

NCTYPE_OBJH ObjHandle,
NCTYPE_UINT8 ServiceCode,
NCTYPE_UINT16 ClassId,
NCTYPE_UINT16 InstanceId,
NCTYPE_UINT16 ServDataLength,
NCTYPE_ANY_P ServData);

Input
ObjHandle Object handle of an open Explicit Messaging Object

ServiceCode Identifies the service being requested

ClassId Identifies the class to which service is directed

InstanceId Identifies the instance to which service is directed

ServDataLength Number of service data bytes for request

ServData Service data for request

Output
None

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-96 ni.com

Function Description
ncWriteDnetExplMsg writes an explicit message request using an Explicit Messaging
Object.

The two most commonly used DeviceNet explicit messages are the Get Attribute Single
service and the Set Attribute Single service. The easiest way to execute the Get Attribute
Single service on a remote device is to use the NI-DNET ncGetDnetAttribute function.
The easiest way to execute the Set Attribute Single service on a remote device is to use the
NI-DNET ncSetDnetAttribute function.

To execute services other than Get Attribute Single and Set Attribute Single, use the
following sequence of function calls: ncWriteDnetExplMsg, ncWaitForState,
ncReadDnetExplMsg. The ncWriteDnetExplMsg function sends an explicit message
request to a remote DeviceNet device. The ncWaitForState function waits for the explicit
message response, and the ncReadDnetExplMsg function reads that response.

Some DeviceNet services that use ncWriteDnetExplMsg are Reset, Save, Restore,
Get Attributes All, and Set Attributes All. Although the DeviceNet Specification defines
the overall format of these services, in most cases their meaning and service data are
object-specific or vendor-specific. Unless your device requires such services and documents
them in detail, you probably do not need them for your application. For more information,
refer to the NI-DNET User Manual.

Parameter Descriptions
ObjHandle

ServiceCode

Description ObjHandle must contain an object handle returned from
ncOpenDnetExplMsg.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description Identifies the service being requested. You can find service code
values for the commonly used DeviceNet services in the DeviceNet
Specification (Volume 1, Appendix G, DeviceNet Explicit Messaging
Services). The device’s vendor documents vendor-specific service
codes.

Values 00 to FF hex

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

© National Instruments Corporation 2-97 NI-DNET Programmer Reference Manual

ClassId

InstanceId

ServDataLength

ServData

Description Identifies the class to which service is directed. You can find
descriptions and identifiers for each standard DeviceNet class in the
DeviceNet Specification (Volume 2, Chapter 6, The DeviceNet Object
Library). The device’s vendor documents vendor-specific classes.
Although the DeviceNet Specification allows 16-bit class IDs, most
class IDs are 8-bit. NI-DNET automatically uses the class ID size (16-bit
or 8-bit) that is appropriate for your device.

Values 00 to FFFF hex

Description Identifies the instance to which service is directed. Instance ID 0 is used
to direct the service toward the class itself. Other instance IDs typically
are numbered starting at 1. For example, the primary Identity Object in
a device uses instance ID 1. Although the DeviceNet Specification
allows 16-bit instance IDs, most instance IDs are 8-bit. NI-DNET
automatically uses the instance ID size (16-bit or 8-bit) that is
appropriate for your device.

Values 00 to FFFF hex

Description Number of service data bytes for the request. This length also specifies
the number of bytes provided in ServData.

Values 0 to 240

Description Service data bytes for the request. The format of this data is specific to
the service code being used. For commonly used services which are not
object-specific, the format of this data is defined in the DeviceNet
Specification (Volume 1, Appendix G, DeviceNet Explicit Messaging
Services). For object-specific service codes, the format of this data is
defined in the object specification. For vendor-specific service codes,
the format of this data is defined by the device vendor.

The ServDataLength parameter specifies the number of service data
bytes sent in the request (and provided in this buffer).

Values Service data bytes for the request

Chapter 2 NI-DNET Functions — ncWriteDnetExplMsg (Write DeviceNet Explicit Message)

NI-DNET Programmer Reference Manual 2-98 ni.com

Examples
LabVIEW
Save the parameters of Parameter Object instance 2 to non-volatile memory. The service code
for Save is 16 hex. The Parameter Object is class ID 0F hex. The Parameter Object does not
define any service data bytes for Save.

C
Reset a DeviceNet device to its power on state using the Explicit Messaging Object
referenced by objh. The service code for Reset is 05 hex. The Identity Object (class ID 1,
instance ID 1) is used to reset DeviceNet devices. The Identity Object defines a single byte of
service data, where 0 is used to simulate a power cycle and 1 is used to reset the device to its
out-of-box state.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_UINT8 type_of_reset;
type_of_reset = 0;
status = ncWriteDnetExplMsg(objh, 0x05, 0x01, 0x01, 1,

&type_of_reset);

Chapter 2 NI-DNET Functions — ncWriteDnetIO (Write DeviceNet I/O)

© National Instruments Corporation 2-99 NI-DNET Programmer Reference Manual

ncWriteDnetIO (Write DeviceNet I/O)

Purpose
Write output data to an I/O Object.

Format
LabVIEW

C
NCTYPE_STATUS ncWriteDnetIO(NCTYPE_OBJH ObjHandle,

NCTYPE_UINT32 SizeofData,
NCTYPE_ANY_P Data);

Input
ObjHandle Object handle of an open I/O Object

SizeofData Size of Data buffer in bytes (C only)

Data Output data

Output
None

Function Description
ncWriteDnetIO writes output data to an NI-DNET I/O Object.

Since each I/O Object continuously produces output data onto the DeviceNet network at a
specified rate, calling ncWriteDnetIO multiple times for each output message is redundant
and can often waste valuable processor time. To synchronize calls to ncWriteDnetIO with
each output message, you can wait for input data (see ncReadDnetIO), or if no input data
exists for the device, you can use an idle wait (such as wait for 10 ms).

The output data bytes passed to ncWriteDnetIO are normally sent to the output assembly of
a remote DeviceNet slave device. The format of this output assembly is normally documented
either by the device vendor or within the DeviceNet Specification itself.

Chapter 2 NI-DNET Functions — ncWriteDnetIO (Write DeviceNet I/O)

NI-DNET Programmer Reference Manual 2-100 ni.com

The bytes of a device’s output assembly often consist of multiple data members rather than
a single value. For C, you can often place each data member into the output bytes by using
typecasting. For LabVIEW, you can often place each data member into the output bytes using
the ncConvertForDnetWrite function. For more information on output assemblies and
how to place individual data members into the output bytes, refer to the NI-DNET User
Manual.

 Parameter Descriptions
ObjHandle

SizeofData

Data

Description ObjHandle must contain an object handle returned from
ncOpenDnetIO.

In LabVIEW, ObjHandle passes through the VI as an output so that it
can be used for subsequent function calls for the object.

Values The encoding of ObjHandle is internal to NI-DNET.

Description For C, SizeofData is the size of the buffer referenced by Data. It is
used to verify that the Data buffer is large enough to hold the output
bytes. This size is normally obtained using the C language sizeof
function and has no direct relation to the number of bytes produced on
the network.

For LabVIEW, since Data is obtained directly as an input, this size is
not needed.

The actual number of bytes produced on the I/O connection is
determined by the OutputLength parameter of ncOpenDnetIO and
not this size.

Values sizeof (buffer referenced by Data)

Description Output data. The format of these output bytes is specific to your
DeviceNet device.

Values Output data bytes

Chapter 2 NI-DNET Functions — ncWriteDnetIO (Write DeviceNet I/O)

© National Instruments Corporation 2-101 NI-DNET Programmer Reference Manual

Examples
LabVIEW
Write 4 output bytes to an I/O Object.

C
Write 10 output bytes to the I/O Object referenced by objh.

NCTYPE_STATUS status;
NCTYPE_OBJH objh;
NCTYPE_UINT8 output[10];
status = ncWriteDnetIO(objh, 10, output);

© National Instruments Corporation 3-1 NI-DNET Programmer Reference Manual

3
NI-DNET Objects

This chapter describes each NI-DNET object, lists the functions which can be used with the
object, and describes each of the object’s driver attributes. The description of each object is
structured as follows:

Description
Gives an overview of the major features and uses of the object.

Functions
Lists each NI-DNET function which can be used with the object. For information on how each
NI-DNET function is used with the object, refer to Chapter 2, NI-DNET Functions.

Driver Attributes
Lists and describes the NI-DNET driver attributes for each object. The driver attributes are
listed in alphabetical order.

For each driver attribute, the description lists its data type, attribute ID, and permissions.
Driver attribute permissions consist of one of the following:

Get You can get the attribute at any time using ncGetDriverAttr, but never set it.

Set You can get the attribute at any time using ncGetDriverAttr. You can set the
attribute using ncSetDriverAttr, but only prior to starting communication
using ncOperateDnetIntf.

Chapter 3 NI-DNET Objects — Explicit Messaging Object

© National Instruments Corporation 3-2 NI-DNET Programmer Reference Manual

Explicit Messaging Object

Description
The Explicit Messaging Object represents an explicit messaging connection to a remote
DeviceNet device (physical device attached to your interface by a DeviceNet cable). Since
only one explicit messaging connection is created for a given device, the Explicit Messaging
Object is also used for features that apply to the device as a whole.

Use the Explicit Messaging Object to do the following:

• Execute the DeviceNet Get Attribute Single service on the remote device
(ncGetDnetAttribute).

• Execute the DeviceNet Set Attribute Single service on the remote device
(ncSetDnetAttribute).

• Send any other explicit message requests to the remote device and receive the associated
explicit message response (ncWriteDnetExplMsg, ncReadDnetExplMsg).

• Configure NI-DNET settings that apply to the entire remote device.

Functions

Function Name Function Description

ncCloseObject Close an NI-DNET object

ncConvertForDnetWrite Convert an appropriate LabVIEW data type for
writing data bytes on the DeviceNet network

ncConvertFromDnetRead Convert data read from the DeviceNet network into
an appropriate LabVIEW data type

ncCreateNotification Create a notification callback for an object (C only)

ncCreateOccurrence Create a notification occurrence for an object
(LabVIEW only)

ncGetDnetAttribute Get an attribute value from a DeviceNet device

ncGetDriverAttr Get the value of an attribute in the NI-DNET driver

ncOpenDnetExplMsg Configure and open an NI-DNET Explicit
Messaging Object

ncReadDnetExplMsg Read an explicit message response

ncSetDnetAttribute Set an attribute value for a DeviceNet device

ncSetDriverAttr Set the value of an attribute in the NI-DNET driver

Chapter 3 NI-DNET Objects — Explicit Messaging Object

NI-DNET Programmer Reference Manual 3-3 ni.com

Driver Attributes
Current State

ncStatusToString Convert status returned from an NI-DNET function
into a descriptive string (C only)

ncWaitForState Wait for one or more states to occur in an object

ncWriteDnetExplMsg Write an explicit message request

Attribute ID NC_ATTR_STATE

Hex Encoding 80000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the NI-DNET object. This driver attribute provides
the current ReadAvail and Established states as described in the
ncWaitForState function.

Use ncGetDriverAttr when you need to determine the current state
of an object but you do not need to wait for a specific state.

Functions (Continued)

Function Name Function Description

Chapter 3 NI-DNET Objects — Explicit Messaging Object

© National Instruments Corporation 3-4 NI-DNET Programmer Reference Manual

Device Type

Keep Explicit Messaging

Attribute ID NC_ATTR_DEVICE_TYPE

Hex Encoding 80000084

Data Type NCTYPE_UINT16

Permissions Set

Description Device Type of the device as reported in the Device Type attribute of
device’s Identity Object. This attribute verifies that the device is the
same one expected by your application. If the Device Type does not
match, NI-DNET returns the error DnetErrDevInitDevType.

The Device Type indicates conformance to a specific device profile,
such as Photoelectric Sensor or Position Controller.

If you do not call ncSetDriverAttr to set the Device Type, a default
value of zero is used. When Device Type is zero, NI-DNET does not
verify the device’s Device Type.

Attribute ID NC_ATTR_KEEP_EXPL_MSG

Hex Encoding 80000099

Data Type NCTYPE_BOOL

Permissions Set

Description To properly close I/O connections in the remote device when
ncCloseObject is called, NI-DNET must ensure that an explicit
messaging connection to the device remains open. When this attribute
is set to NC_TRUE (the default), NI-DNET sends a nonoperational
request (a “ping”) to the device every few seconds, to ensure that the
explicit messaging connection does not timeout. When this attribute is
NC_FALSE, NI-DNET does not ping the explicit messaging
connection. If you are certain that your application sends a request on
a periodic basis, you can set this attribute to NC_FALSE. This attribute
must be set prior to starting communication.

Chapter 3 NI-DNET Objects — Explicit Messaging Object

NI-DNET Programmer Reference Manual 3-5 ni.com

Mac Id

Product Code

Attribute ID NC_ATTR_MAC_ID

Hex Encoding 80000080

Data Type NCTYPE_UINT8

Permissions Get

Description This driver attribute allows you to get the DeviceMacId originally
passed into ncOpenDnetExplMsg.

Attribute ID NC_ATTR_PRODUCT_CODE

Hex Encoding 80000083

Data Type NCTYPE_UINT16

Permissions Set

Description Product Code of the device as reported in the Product Code attribute
of device’s Identity Object. This attribute verifies that the device is the
same one expected by your application. If the Product Code does not
match, NI-DNET returns the error DnetErrDevInitProdCode.

The Product Code is a vendor-specific value which identifies a
particular product within a device type.

If you do not call ncSetDriverAttr to set the Product Code,
a default value of zero is used. When Product Code is zero,
NI-DNET does not verify the device’s Product Code.

Chapter 3 NI-DNET Objects — Explicit Messaging Object

© National Instruments Corporation 3-6 NI-DNET Programmer Reference Manual

Vendor Id

Attribute ID NC_ATTR_VENDOR_ID

Hex Encoding 80000082

Data Type NCTYPE_UINT16

Permissions Set

Description Vendor ID of the device as reported in the Vendor ID attribute of
device’s Identity Object. This attribute verifies that the device is the
same one expected by your application. If the Vendor ID does not
match, NI-DNET returns the error DnetErrDevInitVendor.

The Vendor ID is a number assigned to the device vendor by the Open
Device Vendor’s Association (ODVA).

If you do not call ncSetDriverAttr to set the Vendor ID, a default
value of zero is used. When Vendor ID is zero, NI-DNET does not
verify the device’s Vendor ID.

Chapter 3 NI-DNET Objects — Interface Object

NI-DNET Programmer Reference Manual 3-7 ni.com

Interface Object

Description
The Interface Object represents a DeviceNet interface. Since this interface acts as a device on
the DeviceNet network much like any other device, it is configured with its own MAC ID and
baud rate.

Use the Interface Object to do the following:

• Configure NI-DNET settings that apply to the entire interface.

• Start and stop communication for all NI-DNET objects associated with the interface.

The Interface Object must be the first NI-DNET object opened by your application, and thus
the ncOpenDnetIntf function must be the first NI-DNET function called by your
application.

Functions

Function Name Function Description

EasyIOClose Close multiple NI-DNET objects (LabVIEW only)

EasyIOConfig Configure and open multiple NI-DNET objects
(LabVIEW only)

ncCloseObject Close an NI-DNET object

ncGetDriverAttr Get the value of an attribute in the NI-DNET driver

ncOpenDnetIntf Configure and open an NI-DNET Interface Object

ncOperateDnetIntf Perform an operation on an NI-DNET Interface
Object

ncSetDriverAttr Set the value of an attribute in the NI-DNET driver

ncStatusToString Convert status returned from an NI-DNET function
into a descriptive string (C only)

Chapter 3 NI-DNET Objects — Interface Object

© National Instruments Corporation 3-8 NI-DNET Programmer Reference Manual

Driver Attributes
Baud Rate

Interface Protocol Version

Interface Software Version

Attribute ID NC_ATTR_BAUD_RATE

Hex Encoding 80000007

Data Type NCTYPE_BAUD_RATE

Permissions Get

Description This driver attribute allows you to get the BaudRate originally passed
into ncOpenDnetIntf.

Attribute ID NC_ATTR_PROTOCOL_VERSION

Hex Encoding 80000002

Data Type NCTYPE_VERSION

Permissions Get

Description This driver attribute reports the version of the DeviceNet Specification
to which the NI-DNET software conforms. This version is at least
02000000 hex (version 2.0).

Attribute ID NC_ATTR_SOFTWARE_VERSION

Hex Encoding 80000003

Data Type NCTYPE_VERSION

Permissions Get

Description This driver attribute reports the version of the NI-DNET software.
This version is at least 01000000 hex (version 1.0).

Chapter 3 NI-DNET Objects — Interface Object

NI-DNET Programmer Reference Manual 3-9 ni.com

Mac Id

Poll Mode

Attribute ID NC_ATTR_MAC_ID

Hex Encoding 80000080

Data Type NCTYPE_UINT8

Permissions Get

Description This driver attribute allows you to get the IntfMacId originally
passed into ncOpenDnetIntf.

Attribute ID NC_ATTR_POLL_MODE

Hex Encoding 8000009B

Data Type NCTYPE_POLL_MODE

Permissions Get

Description This driver attribute allows you to get the PollMode originally passed
into ncOpenDnetIntf.

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-10 NI-DNET Programmer Reference Manual

I/O Object

Description
The I/O Object represents an I/O connection to a remote DeviceNet device (physical device
attached to your interface by a DeviceNet cable). The I/O Object usually represents
I/O communication as a master with a remote slave device. If your computer is being used as
the primary controller of your DeviceNet devices, you should configure I/O communication
as a master.

You can also configure the I/O Object for I/O communication as a slave with a remote master.
If your computer is being used as a peripheral device for another primary controller, you can
configure I/O communication as a slave. To configure I/O communication as a slave, set the
I/O Object’s DeviceMacId to the same MAC ID as the Interface Object (IntfMacId
parameter of ncOpenDnetIntf).

The I/O Object supports as many master/slave I/O connections as currently allowed by the
DeviceNet Specification (version 2.0). This means that you can use polled, strobed, and
COS/cyclic I/O connections simultaneously for a given device. As specified by the DeviceNet
Specification, only one master/slave I/O connection of a given type can be used for each
device (MAC ID). For example, you cannot open two polled I/O connections for the same
device.

Use the I/O Object to do the following:

• Read data from the most recent message received on the I/O connection
(ncReadDnetIO).

• Write data for the next message produced on the I/O connection (ncWriteDnetIO).

Functions

Function Name Function Description

EasyIOClose Close multiple NI-DNET objects (LabVIEW only)

EasyIOConfig Configure and open multiple NI-DNET objects
(LabVIEW only)

ncCloseObject Close an NI-DNET object

ncConvertForDnetWrite Convert an appropriate LabVIEW data type for
writing data bytes on the DeviceNet network

ncConvertFromDnetRead Convert data read from the DeviceNet network into an
appropriate LabVIEW data type

ncCreateNotification Create a notification callback for an object (C only)

Chapter 3 NI-DNET Objects — I/O Object

NI-DNET Programmer Reference Manual 3-11 ni.com

ncCreateOccurrence Create a notification occurrence for an object
(LabVIEW only)

ncGetDriverAttr Get the value of an attribute in the NI-DNET driver

ncOpenDnetIO Configure and open an NI-DNET I/O Object

ncReadDnetIO Read input data from an I/O Object

ncSetDriverAttr Set the value of an attribute in the NI-DNET driver

ncStatusToString Convert status returned from an NI-DNET function
into a descriptive string (C only)

ncWaitForState Wait for one or more states to occur in an object

ncWriteDnetIO Write output data to an I/O Object

Functions (Continued)

Function Name Function Description

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-12 NI-DNET Programmer Reference Manual

Driver Attributes
Ack Suppress

Current State

Attribute ID NC_ATTR_ACK_SUPPRESS

Hex Encoding 8000009A

Data Type NCTYPE_BOOL

Permissions Set

Description This driver attribute applies only to change-of-state (COS) or cyclic
I/O connections (ConnectionType of COS or Cyclic). It determines
whether acknowledgments are used (false) or suppressed (true).
Acknowledgments are used with COS or cyclic I/O connections
to verify that produced data is received successfully.

When InputLength is nonzero, the acknowledgment is produced by
NI-DNET. When OutputLength is nonzero, the acknowledgment is
consumed by NI-DNET.

If you do not call ncSetDriverAttr to set Ack Suppress, a default
value of false is used.

When successful device operation can be verified by other means,
COS or cyclic acknowledgment can often be suppressed. For
example, if you open a polled I/O connection in addition to the
COS or cyclic I/O connection, you can set Ack Suppress to true.

If the ConnectionType of this I/O object is Poll or Strobe,
the Ack Suppress attribute is ignored.

Attribute ID NC_ATTR_STATE

Hex Encoding 80000009

Data Type NCTYPE_STATE

Permissions Get

Description Current state of the NI-DNET object. This driver attribute provides
the current ReadAvail and Established states as described in
ncWaitForState.

Chapter 3 NI-DNET Objects — I/O Object

NI-DNET Programmer Reference Manual 3-13 ni.com

Device Type

Exp Packet Rate

Attribute ID NC_ATTR_DEVICE_TYPE

Hex Encoding 80000084

Data Type NCTYPE_UINT16

Permissions Set

Description Device Type of the device as reported in the Device Type attribute of
device’s Identity Object. This attribute verifies that the device is the
same one expected by your application. If the Device Type does not
match, NI-DNET returns the error DnetErrDevInitDevType.

The Device Type indicates conformance to a specific device profile,
such as Photoelectric Sensor or Position Controller.

If you do not call ncSetDriverAttr to set the Device Type, a default
value of zero is used. When Device Type is zero, NI-DNET does not
verify the device’s Device Type.

Attribute ID NC_ATTR_EXP_PACKET_RATE

Hex Encoding 80000095

Data Type NCTYPE_DURATION

Permissions Get

Description This driver attribute allows you to get the ExpPacketRate originally
passed into ncOpenDnetIO.

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-14 NI-DNET Programmer Reference Manual

Inhibit Timer

Input Length

Attribute ID NC_ATTR_EXP_INHIBIT_TIMER

Hex Encoding 80000097

Data Type NCTYPE_DURATION

Permissions Set

Description This driver attribute applies only to COS I/O connections
(ncOpenDnetIO with ConnectionType of COS). This driver
attribute configures the minimum delay time between subsequent data
productions. This attribute can limit the amount of network traffic
used for COS messages from devices with frequently changing I/O.

The default value for Inhibit Timer is zero, as specified in the
DeviceNet Specification. Since this default is appropriate for most
applications, the Inhibit Timer attribute is not included in the
configuration attributes provided with ncOpenDnetIO. If you want to
change the default Inhibit Timer, call ncSetDriverAttr prior to
starting communication.

If ConnectionType is Poll, Strobe, or Cyclic, the Inhibit Timer
attribute is ignored. For these I/O connection types, the frequency of
data production is controlled entirely by the ExpPacketRate
attribute.

Attribute ID NC_ATTR_IN_LEN

Hex Encoding 80000091

Data Type NCTYPE_UINT32

Permissions Get

Description This driver attribute allows you to get the InputLength originally
passed into ncOpenDnetIO.

Chapter 3 NI-DNET Objects — I/O Object

NI-DNET Programmer Reference Manual 3-15 ni.com

Keep Explicit Messaging

Mac Id

Output Length

Attribute ID NC_ATTR_KEEP_EXPL_MSG

Hex Encoding 80000099

Data Type NCTYPE_BOOL

Permissions Set

Description To properly close I/O connections in the remote device when
ncCloseObject is called, NI-DNET must ensure that an explicit
messaging connection to the device remains open. When this attribute
is set to NC_TRUE (the default), NI-DNET sends a nonoperational
request (a “ping”) to the device every few seconds, to ensure that the
explicit messaging connection does not timeout. When this attribute
is NC_FALSE, NI-DNET does not ping the explicit messaging
connection. If you are certain that your device can internally close its
own I/O connections (deferred delete), you can set this attribute to
NC_FALSE. This attribute must be set prior to starting communication.

Attribute ID NC_ATTR_MAC_ID

Hex Encoding 80000080

Data Type NCTYPE_UINT8

Permissions Get

Description This driver attribute allows you to get the DeviceMacId originally
passed into ncOpenDnetIO.

Attribute ID NC_ATTR_OUT_LEN

Hex Encoding 80000092

Data Type NCTYPE_UINT32

Permissions Get

Description This driver attribute allows you to get the OutputLength originally
passed into ncOpenDnetIO.

Chapter 3 NI-DNET Objects — I/O Object

© National Instruments Corporation 3-16 NI-DNET Programmer Reference Manual

Product Code

Vendor Id

Attribute ID NC_ATTR_PRODUCT_CODE

Hex Encoding 80000083

Data Type NCTYPE_UINT16

Permissions Set

Description Product Code of the device as reported in the Product Code attribute
of device’s Identity Object. This attribute is used to verify that the
device is the same one expected by your application. If the
Product Code does not match, NI-DNET returns the error
DnetErrDevInitProdCode.

The Product Code is a vendor-specific value which identifies a
particular product within a device type.

If you do not call ncSetDriverAttr to set the Product Code, a
default value of zero is used. When Product Code is zero, NI-DNET
does not verify the device’s Product Code.

Attribute ID NC_ATTR_VENDOR_ID

Hex Encoding 80000082

Data Type NCTYPE_UINT16

Permissions Set

Description Vendor ID of the device as reported in the Vendor ID attribute of
device’s Identity Object. This attribute verifies that the device is the
same one expected by your application. If the Vendor ID does not
match, NI-DNET returns the error DnetErrDevInitVendor.

The Vendor ID is a number assigned to the device vendor by the Open
Device Vendor’s Association (ODVA).

If you do not call ncSetDriverAttr to set the Vendor ID, a default
value of zero is used. When Vendor ID is zero, NI-DNET does not
verify the device’s Vendor ID.

© National Instruments Corporation A-1 NI-DNET Programmer Reference Manual

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation G-1 NI-DNET Programmer Reference Manual

Glossary

Symbol Prefix Value

m milli 10–3

k kilo 103

A

ANSI American National Standards Institute.

Application
Programming
Interface (API)

A collection of functions used by a user application to access hardware.
Within NI-DNET, you use API functions to make calls into the NI-DNET
driver.

ASCII American Standard Code for Information Interchange.

attribute The externally visible qualities of an object; for example, an instance
square of class geometric shapes could have the attributes length of sides
and color, with the values 4 in. and blue. Also known as property.

B

b Bits.

bit strobed I/O Master/slave I/O connection in which the master broadcasts a single strobe
command to all strobed slaves then receives a strobe response from each
strobed salve.

C

CAN Controller Area Network.

change-of-state I/O Master/slave I/O connection which is similar to cyclic I/O but data can be
sent when a change in the data is detected.

class A classification of things with similar qualities.

Glossary

NI-DNET Programmer Reference Manual G-2 ni.com

connection An association between two or more devices on a network that describes
when and how data is transferred.

controller A device that receives data from sensors and sends data to actuators to hold
one or more external, real-world variables at a certain level or condition.
A thermostat is a simple example of a controller.

COS I/O See change-of-state I/O.

cyclic I/O Master/slave I/O connection in which the slave (or master) sends data at a
fixed interval.

D

device A physical assembly, linked to a communication line (cable), capable of
communicating across the network according to a protocol specification.

device network Multi-drop digital communication network for sensors, actuators, and
controllers.

DeviceNet interface A physical DeviceNet port on an AT-CAN, PCI-CAN, PCMCIA-CAN,
or PXI-8461 interface.

E

expected packet rate The rate (in milliseconds) at which a DeviceNet connection is expected to
transfer its data.

explicit messaging
connection

General-purpose connection used for executing services on a particular
object in a DeviceNet device.

H

hex Hexadecimal.

Glossary

© National Instruments Corporation G-3 NI-DNET Programmer Reference Manual

I

I/O connection Connection used for exchange of physical input/output (sensor/activator)
data, as well as other control-oriented data.

individual polling A polled I/O communication scheme in which each polled slave
communicates at its own individual rate.

instance A specific instance of a given class. For example, a blue square of 4 inches
per side would be one instance of the class Geometric Shapes.

K

KB Kilobytes of memory.

L

LabVIEW Laboratory Virtual Instrument Engineering Workbench.

local Within NI-DNET, anything that exists on the same host (personal
computer) as the NI-DNET driver.

M

MAC ID Media access control layer identifier. In DeviceNet, a device’s MAC ID
represents its address on the DeviceNet network.

master/slave DeviceNet communication scheme in which a master device allocates
connections to one or more slave devices, and those slave devices can only
communicate with the master and not one another.

member An individual data value within an array of DeviceNet data bytes.

method An action performed on an instance to affect its behavior; the externally
visible code of an object. Within NI-DNET, you use NI-DNET functions to
execute methods for objects. Also known as service, operation, and action.

multi-drop A physical connection in which multiple devices communicate with one
another along a single cable.

Glossary

NI-DNET Programmer Reference Manual G-4 ni.com

N

NI-DNET driver Device driver and/or firmware that implement all the specifics of a National
Instruments DeviceNet interface.

notification Within NI-DNET, an operating system mechanism that the NI-DNET
driver uses to communicate events to your application. You can think
of a notification of as an API function, but in the opposite direction.

O

object See instance.

ODVA Open DeviceNet Vendor’s Association.

P

polled I/O Master/slave I/O connection in which the master sends a poll command to
a slave, then receives a poll response from that slave.

protocol A formal set of conventions or rules for the exchange of information among
devices of a given network.

R

remote Within NI-DNET, anything that exists in another device of the device
network (not on the same host as the NI-DNET driver).

resource Hardware settings used by National Instruments DeviceNet hardware,
including an interrupt request level (IRQ) and an 8 KB physical memory
range (such as D0000 to D1FFF hex).

Glossary

© National Instruments Corporation G-5 NI-DNET Programmer Reference Manual

S

s Seconds.

scanned polling A polled I/O communication scheme in which all poll commands are sent
out at the same rate, in quick succession.

sensor A device that measures electrical, mechanical, or other signals from an
external, real-world variable; in the context of device networks, sensors are
devices that send their primary data value onto the network; examples
include temperature sensors and presence sensors. Also known as
transmitter.

strobed I/O See bit strobed I/O.

V

VI Virtual Instrument.

© National Instruments Corporation I-1 NI-DNET Programmer Reference Manual

Index

C
conventions used in the manual, vii

D
data types, 1-1

NCTYPE_ANY_P, 1-2
NCTYPE_ATTRID, 1-2
NCTYPE_BOOL, 1-1
NCTYPE_DURATION, 1-2
NCTYPE_INT16, 1-1
NCTYPE_INT32, 1-1
NCTYPE_INT8, 1-1
NCTYPE_LREAL, 1-1
NCTYPE_OBJH, 1-2
NCTYPE_OPCODE, 1-3
NCTYPE_REAL, 1-1
NCTYPE_STATE, 1-3
NCTYPE_STATUS, 1-3
NCTYPE_STRING, 1-1
NCTYPE_type_P, 1-1
NCTYPE_UINT16, 1-1
NCTYPE_UINT32, 1-1
NCTYPE_UINT8, 1-1
NCTYPE_VERSION, 1-2

diagnostic tools (NI resources), A-1
documentation

conventions used in manual, vii
how to use manual set, vi
NI resources, A-1
related documentation, vii

drivers (NI resources), A-1

E
EasyIOClose, 2-4
EasyIOConfig, 2-6
examples (NI resources), A-1
Explicit Messaging Object, 3-2

F
functions, 2-1

descriptions, using, 2-1
EasyIOClose, 2-4
EasyIOConfig, 2-6
list of, 2-2
ncCloseObject, 2-10
ncConvertForDnetWrite, 2-12
ncConvertFromDnetRead, 2-20
ncCreateNotification, 2-27
ncCreateOccurrence, 2-36
ncGetDnetAttribute, 2-40
ncGetDriverAttr, 2-46
ncOpenDnetExplMsg, 2-49
ncOpenDnetIntf, 2-52
ncOpenDnetIO, 2-58
ncOperateDnetIntf, 2-68
ncReadDnetExplMsg, 2-72
ncReadDnetIO, 2-76
ncSetDnetAttribute, 2-79
ncSetDriverAttr, 2-84
ncStatusToString, 2-87
ncWaitForState, 2-90
ncWriteDnetExplMsg, 2-95
ncWriteDnetIO, 2-99

Index

© National Instruments Corporation I-2 NI-DNET Programmer Reference Manual

H
help, technical support, A-1
how to use manual set, vi

I
I/O Object, 3-10
instrument drivers (NI resources), A-1
Interface Object, 3-7

K
KnowledgeBase, A-1

N
National Instruments support and

services, A-1
ncCloseObject, 2-10
ncConvertForDnetWrite, 2-12
ncConvertFromDnetRead, 2-20
ncCreateNotification, 2-27
ncCreateOccurrence, 2-36
ncGetDnetAttribute, 2-40
ncGetDriverAttr, 2-46
ncOpenDnetExplMsg, 2-49
ncOpenDnetIntf, 2-52
ncOpenDnetIO, 2-58
ncOperateDnetIntf, 2-68
ncReadDnetExplMsg, 2-72
ncReadDnetIO, 2-76
ncSetDnetAttribute, 2-79
ncSetDriverAttr, 2-84
ncStatusToString, 2-87
NCTYPE_ANY_P, 1-2
NCTYPE_ATTRID, 1-2
NCTYPE_BOOL, 1-1
NCTYPE_DURATION, 1-2
NCTYPE_INT16, 1-1
NCTYPE_INT32, 1-1

NCTYPE_INT8, 1-1
NCTYPE_LREAL, 1-1
NCTYPE_OBJH, 1-2
NCTYPE_OPCODE, 1-3
NCTYPE_REAL, 1-1
NCTYPE_STATE, 1-3
NCTYPE_STATUS, 1-3
NCTYPE_STRING, 1-1
NCTYPE_type_P, 1-1
NCTYPE_UINT16, 1-1
NCTYPE_UINT32, 1-1
NCTYPE_UINT8, 1-1
NCTYPE_VERSION, 1-2
ncWaitForState, 2-90
ncWriteDnetExplMsg, 2-95
ncWriteDnetIO, 2-99
NI support and services, A-1
NI-DNET

data types, 1-1
functions, 2-1

descriptions, using, 2-1
EasyIOClose, 2-4
EasyIOConfig, 2-6
list of, 2-2
ncCloseObject, 2-10
ncConvertForDnetWrite, 2-12
ncConvertFromDnetRead, 2-20
ncCreateNotification, 2-27
ncCreateOccurrence, 2-36
ncGetDnetAttribute, 2-40
ncGetDriverAttr, 2-46
ncOpenDnetExplMsg, 2-49
ncOpenDnetIntf, 2-52
ncOpenDnetIO, 2-58
ncOperateDnetIntf, 2-68
ncReadDnetExplMsg, 2-72
ncReadDnetIO, 2-76
ncSetDnetAttribute, 2-79
ncSetDriverAttr, 2-84
ncStatusToString, 2-87

Index

NI-DNET Programmer Reference Manual I-3 ni.com

ncWaitForState, 2-90
ncWriteDnetExplMsg, 2-95
ncWriteDnetIO, 2-99

objects, 3-1
Explicit Messaging Object, 3-2
I/O Object, 3-10
Interface Object, 3-7

O
objects, 3-1

Explicit Messaging Object, 3-2
I/O Object, 3-10
Interface Object, 3-7

P
programming examples (NI resources), A-1

R
related documentation, vii

S
software (NI resources), A-1
support, technical, A-1

T
technical support, A-1
training and certification (NI resources), A-1
troubleshooting (NI resources), A-1

W
Web resources, A-1

	NI-DNET Programmer Reference Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	How to Use the Manual Set
	Conventions
	Related Documentation

	Chapter 1 NI-DNET Data Types
	Table 1-1. NI-DNET Data Types

	Chapter 2 NI-DNET Functions
	Using the Function Descriptions
	List of NI-DNET Functions
	Table 2-1. NI-DNET Functions

	EasyIOClose (Easy IO Close)
	EasyIOConfig (Easy IO Config)
	ncCloseObject (Close)
	ncConvertForDnetWrite (Convert For DeviceNet Write)
	ncConvertFromDnetRead (Convert From DeviceNet Read)
	ncCreateNotification (Create Notification)
	ncCreateOccurrence (Create Occurrence)
	ncGetDnetAttribute (Get DeviceNet Attribute)
	ncGetDriverAttr (Get Driver Attribute)
	ncOpenDnetExplMsg (Open DeviceNet Explicit Messaging)
	ncOpenDnetIntf (Open DeviceNet Interface)
	ncOpenDnetIO (Open DeviceNet I/O)
	ncOperateDnetIntf (Operate DeviceNet Interface)
	ncReadDnetExplMsg (Read DeviceNet Explicit Message)
	ncReadDnetIO (Read DeviceNet I/O)
	ncSetDnetAttribute (Set DeviceNet Attribute)
	ncSetDriverAttr (Set Driver Attribute)
	ncStatusToString (Status To String)
	Table 2-2. NI-DNET Status Codes

	ncWaitForState (Wait For State)
	ncWriteDnetExplMsg (Write DeviceNet Explicit Message)
	ncWriteDnetIO (Write DeviceNet I/O)

	Chapter 3 NI-DNET Objects
	Explicit Messaging Object
	Interface Object
	I/O Object

	Appendix A Technical Support and Professional Services
	Glossary
	A-C
	D-H
	I-M
	N-R
	S-V

	Index
	C-F
	H-N
	O-W

